DEFINITION OF MODULAR EQUIVALENCE AND DIRECT PROOFS

FEBRUARY 13, 2018

Let a, b, c, d and m and n be integers and assume that m, n > 0. We say that $a \equiv b \pmod{m}$ if m divides a - b. We say 'a is equivalent to $b \pmod{m}$ ' if this is true. The integer m is called the modulus. Operations which are performed "mod m" are called modular arithmetic.

WARNING: Don't use the operation of division when using modular arithmetic unless you know that the result is an integer. It doesn't make sense to say $\frac{a}{b} \equiv c \pmod{m}$ unless a/b is an integer. It just isn't defined and it is best to not use fractions to avoid confusion. Instead if a/b is an integer, then write a = kb and use k in place of a/b.

All of the following statements are true except for two. Give a proof for all the ones that are true and give a counterexample for the two that is false.

- (1) if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- (2) if gcd(a, m) = 1, then there is an integer x such that $ax = b \pmod{m}$.
- (3) if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{mn}$
- (4) if $ab \equiv ac \pmod{m}$ and $a \not\equiv 0 \pmod{m}$, then $b \equiv c \pmod{m}$
- (5) if $ab \equiv c \pmod{m}$ and $ad \equiv 1 \pmod{m}$, then $b \equiv cd \pmod{m}$.
- (6) if $a \equiv b \pmod{m}$ and k divides a and k divides m, then k divides b.

Now apply the results above to find all the values of x that solve following modular equations.

$$5x \equiv 2 \pmod{7}$$
 $5x \equiv 1 \pmod{34}$ $5x \equiv 1 \pmod{26}$ $5x \equiv 6 \pmod{786}$

$$7x \equiv 19 \pmod{84}$$
 $7x \equiv 21 \pmod{84}$ $139x \equiv 11 \pmod{1027}$ $1197x \equiv 4 \pmod{1199}$