PRACTICE PROBLEMS

Provide a full explanation of the

- (1) Give an example of a polynomial with real coefficients of degree 3 with
 - (a) zero real roots
 - (b) one real root
 - (c) two real roots
 - (d) three real roots
- (2) Give an example of a polynomial with real coefficients of degree 4 with
 - (a) zero real roots
 - (b) one real root
 - (c) two real roots
 - (d) three real roots
 - (e) four real roots
- (3) find a polynomial p(x) with real coefficients such that p(r) = the value on the ray traveling west from the 1 in the picture below (e.g. p(1) = 1, p(2) = 6, p(3) = 19, etc.):

What are the values of p(0), p(-1), p(-2), etc.? Why? (4)

`									/
	`							/	
		<u></u>		4					
1	2	3	•••	'n	(n+1)	•••	(2n - 2)	(2n - 1)	(2n)

Consider the natural numbers from 1 to 2n. Pair off these numbers as above, 1 and (2n), 2 and (2n-1), 3 and (2n-2), ..., n and (n+1), and evaluate the products of the pairs, $1 \times (2n)$, $2 \times (2n-1)$, $3 \times (2n-2)$, ..., $n \times (n+1)$. Prove that for no value of n are two of these n products equal.