BAD PROOFS BY INDUCTION

Proposition 1. For all $n \geq 0$,

$$\frac{d}{dx}(x^n) = 0$$

Proof. Base case: n = 0,

$$\frac{d}{dx}(x^0) = \frac{d}{dx}(1) = 0$$

Assume that $\frac{d}{dx}(x^m) = 0$ for all $0 \le m \le n$, then

$$\frac{d}{dx}(x^{n+1}) = \frac{d}{dx}(x^n \cdot x)$$

$$= x \cdot \frac{d}{dx}(x^n) + x^n \cdot \frac{d}{dx}(x) \qquad \text{by the product rule}$$

$$= x \cdot 0 + x^n \cdot 0 \qquad \text{by the inductive assumption}$$

$$= 0$$

Hence by the principle of mathematical induction $\frac{d}{dx}(x^n) = 0$ for all $n \ge 0$.

Proposition 2. For all $n \geq 2$,

$$2^n < n!$$

Proof. Base case: $2^1 \le 2!$.

Assume that $2^n < n!$, for some fixed n where $1 \le n$. Then, $2 \le n+1$ and

$$2^{n+1} = 2(2^n) < 2(n!) \le (n+1)n! = (n+1)! \ .$$

Hence, by the principle of mathematical induction $2^n < n!$ for all $n \ge 2$.

Note: $2^2 \nleq 2!$

Proposition 3. Let $a_n = 3a_{n-1} - n$ and $a_0 = 1$, then for $n \ge 0$,

$$a_n = \frac{3^n + 2n + 3}{4}$$

Proof. Base case: $a_0=1$ and $\frac{3^0+2\cdot0+3}{4}=\frac{1+3}{4}=1$ and are equal. Assume that $a_n=\frac{3^n+2n+3}{4}$ for some fixed n, then

$$a_{n+1} = \frac{3^{n+1} + 2(n+1) + 3}{4}$$

$$3a_n - (n+1) = \frac{3 \cdot 3^n + 2n + 5}{4}$$

$$3\left(\frac{3^n + 2n + 3}{4}\right) - (n+1) = \frac{3 \cdot 3^n + 2n + 5 + (4n+4) - (4n+4)}{4}$$

$$\frac{3 \cdot 3^n + 6n + 9}{4} - (n+1) = \frac{3 \cdot 3^n + 6n + 9 - (4n+4)}{4}$$

$$\frac{3 \cdot 3^n + 6n + 9}{4} - \frac{4(n+1)}{4} = \frac{3 \cdot 3^n + 6n + 9}{4} - \frac{4(n+1)}{4}$$

Hence, by the principle of mathematical induction $a_n = 3a_{n-1} - n$ for all $n \ge 0$.

Proposition 4. For all $n \ge 1$,

(1)
$$\underbrace{\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots}_{n \text{ terms}} = \frac{3}{2} - \frac{1}{n}$$

Proof. For n=1, we have $\frac{1}{1\cdot 2}=1/2$ and $\frac{3}{2}-\frac{1}{1}=1/2$. Assume that (1) holds for some fixed n, then

$$\left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(n-1)n}\right) + \frac{1}{n(n+1)} = \frac{3}{2} - \frac{1}{n} + \frac{1}{n(n+1)}$$
$$= \frac{3}{2} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1}$$
$$= \frac{3}{2} - \frac{1}{n+1}$$

Note: $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} \neq \frac{3}{2} - \frac{1}{2}$

All of the proofs above have some fault in the argument. Some you will have to go through very carefully to see what goes wrong.

Note: some of these proofs were taken from

https://math.stackexchange.com/questions/1196303/fake-induction-proofs

Other proofs are modified versions of what is in the textbook.

For the proof that all horses are the same color see

https://en.wikipedia.org/wiki/All_horses_are_the_same_color