SOME QUESTIONS ON PROOFS BY COUNTING

(1) Prove the following identities in two different ways by writing a story which counts something in two different ways (recall the two ways of coloring rooms in a house). You should also verify that the identities are correct using algebra (but this is not what I am asking here).
(a) $n^{2}=n+n(n-1)$
(b) $n(n+1)=n^{2}+n$
(c) $n(n+1)(n+2)=n^{3}+3 n^{2}+2 n$
(2) Recall the example of coloring balls in a bin. Create a story which explains the following identities by counting the same thing in two different ways:
(a) $k\binom{n}{k}=n\binom{n-1}{k-1}$
(b) $n\binom{n}{k}=n\binom{n-1}{k-1}+(n-k)\binom{n}{k}$
(c) $n k\binom{n}{k}=n\binom{n-1}{k-1}+n(n-1)\binom{n-2}{k-2}+n(n-1)\binom{n-2}{k-1}$
(3) Prove the following (a) induction and (b) by counting a set of objects in two different ways.

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\binom{n-3}{k-1}+\cdots+\binom{k-1}{k-1}
$$

(4) Prove the following (a) induction and (b) by counting a set of objects in two different ways.

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-2}{k-1}+\binom{n-3}{k-2}+\cdots+\binom{n-k-1}{0}
$$

