A PROOF BY CONTRADICTION

We started with five rules for ordering of the real numbers.
(1) If $x \in \mathbb{R}$, then $x>0, x=0$ or $x<0$ and exactly one of these is true.
(2) If $x>y$, then $-x<-y$.
(3) If $x>y$ and $c \in \mathbb{R}$, then $x+c>y+c$.
(4) If $x>0$ and $y>0$, then $x y>0$.
(5) If $x>y$ and $y>z$, then $x>z$.

Theorem 1. Let x, u and v be real numbers. If $x>0$ and $u>v$, then $x u>x v$.
Proof. We start by assuming the opposite of 'If $x>0$ and $u>v$, then $x u>x v$.' A statement of the form 'if P, then Q ' is false if P is true, and Q is false. Hence, we assume $x>0$ and $u>v$ and $x u \leq x v$ (in this case P is the statement ' $x>0$ and $u>v$ ' and Q is the statement $x u>x v$).

By rule (3), $u-v>v-v$ so $u-v>0$. By rule (4), $x(u-v)>0$ and so $x u-x v>0$.
But our assumption was that $x u \leq x v$ and so either $x u<x v$ (and so $x u-x v<0$ by rule (3)) or $x u=x v$ (and so $x u-x v=0$). But by rule (1), it is impossible that $x u-x v>0$ and either $x u-x v<0$ or $x u-x v=0$. This is a contradiction. Therefore 'If $x>0$ and $u>v$, then $x u>x v^{\prime}$ is true.

You should try to write this as a direct proof and to do this by assuming that ' $x>0$ and $u>v^{\prime}$ and showing that $x u>x v$.

