A PROOF THAT $\sqrt{6} / 3$ IS IRRATIONAL

MIKE ZABROCKI

Theorem 1. $\sqrt{6} / 3$ is irrational
Note: the technique of proving that \sqrt{a} is irrational is 'assume that rational' and arrive at a contradiction. The contradiction is usually to show that the rational number that it is equal to cannot be a fraction with no common factors in the numerator and denominator (which we should always be able to do).
Proof. Assume that $\sqrt{6} / 3=\frac{r}{s}$ where r and s are integers and $s \neq 0$. Moreover, we can assume that r and s have no common factors.

If we square this equation then $\frac{r^{2}}{s^{2}}=\frac{6}{9}=\frac{2}{3}$, and so $3 r^{2}=2 s^{2}$. Since the product of odd numbers is odd, if r is odd, then $3 r^{2}$ is odd, but since $2 s^{2}$ is even and $2 s^{2}=3 r^{2}$, it must be that r is even. Hence $r=2 k$ for some integer k and $3 r^{2}=12 k^{2}=2 s^{2}$ so $s^{2}=6 k^{2}$.

Now s cannot be odd since $s^{2}=6 k^{2}$ and $6 k^{2}$ is even so s must be even. But our assumption was that r and s have no common factors, but we deduced that they were both even, hence this is a contradiction.

