A SAMPLE PROOF BY INDUCTION

I start off by proving the following inequality that I will need for my induction step. I am separating this in the form of a Lemma because it requires a lot of work to show why it is true. The argument for this identity will seem rather strange, but the way that I figured out is on the last page of this document.
Lemma 1. For $n \geq 2$,

$$
\begin{equation*}
\frac{2}{n^{2}}\left(1-\frac{1}{\sqrt{n+1}}\right)<\frac{2}{(n+1)^{2}} \tag{1}
\end{equation*}
$$

Proof. Note that for $n \geq 2, n^{2}-n-1>0$. Therefore multiplying both sides of this equation by $0<4 n(n+1)$, we have $0<4(n+1) n\left(n^{2}-n-1\right)=4 n^{4}-8 n^{2}-4 n$.

Next add $16 n^{3}+32 n^{2}+20 n+4=(4 n+2)^{2}(n+1)$ to both sides of the equation. Therefore,

$$
(4 n+2)^{2}(n+1)=16 n^{3}+32 n^{2}+20 n+4<4 n^{4}+16 n^{3}+24 n^{2}+16 n+4=4(n+1)^{4} .
$$

Since both of these expressions are positive for $n>2$, then we can take the square root of both sides of the equation and the inequality will still hold, so

$$
(4 n+2) \sqrt{n+1}<2(n+1)^{2} .
$$

If we add $2 n^{2} \sqrt{n+1}-2(n+1)^{2}$ to both sides of the equation, then

$$
2(n+1)^{2}(\sqrt{n+1}-1)<2 n^{2} \sqrt{n+1}
$$

Next divide both sides of the equation by $(n+1)^{2} n^{2} \sqrt{n+1}$ so that we have

$$
\frac{2(n+1)^{2}(\sqrt{n+1}-1)}{(n+1)^{2} n^{2} \sqrt{n+1}}<\frac{2 n^{2} \sqrt{n+1}}{(n+1)^{2} n^{2} \sqrt{n+1}} .
$$

and this is equivalent to equation (1).

But now here is the problem that I (tried, but didn't have time to) show in class:
Proposition 2. For all $n \geq 2$,

$$
\begin{equation*}
\left(1-\frac{1}{\sqrt{2}}\right)\left(1-\frac{1}{\sqrt{3}}\right) \cdots\left(1-\frac{1}{\sqrt{n}}\right)<\frac{2}{n^{2}} \tag{2}
\end{equation*}
$$

Proof. Note that $\left(1-\frac{1}{\sqrt{2}}\right) \doteq 0.2928$ and $\frac{2}{2^{2}}=.5$. So as a base case for our proof by induction, we know that equation (2) is true for $n=2$.

Now assume that

$$
\begin{equation*}
\left(1-\frac{1}{\sqrt{2}}\right)\left(1-\frac{1}{\sqrt{3}}\right) \cdots\left(1-\frac{1}{\sqrt{n}}\right)<\frac{2}{n^{2}} \tag{3}
\end{equation*}
$$

is true for some fixed n, then

$$
\left(1-\frac{1}{\sqrt{2}}\right)\left(1-\frac{1}{\sqrt{3}}\right) \cdots\left(1-\frac{1}{\sqrt{n}}\right)\left(1-\frac{1}{\sqrt{n+1}}\right)<\frac{2}{n^{2}}\left(1-\frac{1}{\sqrt{n+1}}\right)<\frac{2}{(n+1)^{2}}
$$

by Lemma 1 .
Therefore, by the principle of mathematical induction,

$$
\begin{equation*}
\left(1-\frac{1}{\sqrt{2}}\right)\left(1-\frac{1}{\sqrt{3}}\right) \cdots\left(1-\frac{1}{\sqrt{n}}\right)<\frac{2}{n^{2}} \tag{4}
\end{equation*}
$$

is true for all $n \geq 2$.

Here is my scratch calculation that I used to prove Lemma 1. I did something a little different than I did during class on Thursday because I was a little more careful with how I showed the relation and calculation simplified quite a bit.

$$
\begin{gathered}
\text { Want to show: } \frac{2}{n^{2}}\left(1-\frac{1}{\sqrt{n+1}}\right) ?<? \frac{2}{(n+1)^{2}} \\
\begin{array}{c}
n^{2}(n+1)^{2} \sqrt{n+1} \frac{2}{n^{2}}\left(1-\frac{1}{\sqrt{n+1}}\right) ?<? n^{2}(n+1)^{2} \sqrt{n+1} \frac{2}{(n+1)^{2}} \\
2(n+1)^{2}(\sqrt{n+1}-1) ?<? 2 n^{2} \sqrt{n+1} \\
\left(2 n^{2}+4 n+2\right)(\sqrt{n+1}-1) ?<? 2 n^{2} \sqrt{n+1} \\
(4 n+2) \sqrt{n+1} ?<?\left(2 n^{2}+4 n+2\right) \\
(4 n+2)^{2}(n+1) ?<?\left(2 n^{2}+4 n+2\right)^{2} \\
16 n^{3}+32 n^{2}+20 n+4 ?<? 4 n^{4}+16 n^{3}+24 n^{2}+16 n+4 \\
0 ?<? 4 n^{4}-8 n^{2}-4 n \\
0 ?<? 4(n+1) n\left(n^{2}-n-1\right)
\end{array}
\end{gathered}
$$

and this last statement looks like something that I know is true for $n \geq 2$.
This is something I would do on a scratch sheet of paper and then throw away, but I include it here because you can then see where the proof of Lemma 1 comes from (otherwise it is completely mysterious).

