
A SAMPLE PROOF BY INDUCTION

I start off by proving the following inequality that I will need for my induction step. I
am separating this in the form of a Lemma because it requires a lot of work to show why it
is true. The argument for this identity will seem rather strange, but the way that I figured
out is on the last page of this document.

Lemma 1. For n ≥ 2,
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Proof. Note that for n ≥ 2, n2 − n − 1 > 0. Therefore multiplying both sides of this
equation by 0 < 4n(n + 1), we have 0 < 4(n + 1)n(n2 − n− 1) = 4n4 − 8n2 − 4n.

Next add 16n3 + 32n2 + 20n + 4 = (4n + 2)2(n + 1) to both sides of the equation.
Therefore,

(4n + 2)2(n + 1) = 16n3 + 32n2 + 20n + 4 < 4n4 + 16n3 + 24n2 + 16n + 4 = 4(n + 1)4 .

Since both of these expressions are positive for n > 2, then we can take the square root of
both sides of the equation and the inequality will still hold, so
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Next divide both sides of the equation by (n + 1)2n2
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and this is equivalent to equation (1). �

But now here is the problem that I (tried, but didn’t have time to) show in class:

Proposition 2. For all n ≥ 2,
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Proof. Note that
(
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= 0.2928 and 2

22
= .5. So as a base case for our proof by

induction, we know that equation (2) is true for n = 2.
Now assume that
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is true for some fixed n, then(
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by Lemma 1.
Therefore, by the principle of mathematical induction,

(4)

(
1− 1√

2

)(
1− 1√

3

)
· · ·

(
1− 1√

n

)
<

2

n2

is true for all n ≥ 2. �
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Here is my scratch calculation that I used to prove Lemma 1. I did something a little
different than I did during class on Thursday because I was a little more careful with how
I showed the relation and calculation simplified quite a bit.

Want to show:
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16n3 + 32n2 + 20n + 4 ? <? 4n4 + 16n3 + 24n2 + 16n + 4

0 ? <? 4n4 − 8n2 − 4n

0 ? <? 4(n + 1)n(n2 − n− 1)

and this last statement looks like something that I know is true for n ≥ 2.
This is something I would do on a scratch sheet of paper and then throw away, but I

include it here because you can then see where the proof of Lemma 1 comes from (otherwise
it is completely mysterious).


