class page
9 statements about equivalence:
Let $n$ be a positive integer and $a,b,c,d$ be integers.
Provide a proof of the following statements.
1. $a\equiv a~(mod~n)$
2. if $a\equiv b~(mod~n)$, then $b\equiv a~(mod~n)$
3. if $a\equiv b~(mod~n)$ and $b\equiv c~(mod~n)$, then $a\equiv c~(mod~n)$
4. if $a\equiv b~(mod~n)$ then $a+c\equiv b+c~(mod~n)$
5. if $a\equiv b~(mod~n)$ then $a\cdot c\equiv b\cdot c~(mod~n)$
6. if $a\equiv b~(mod~n)$ and $c\equiv d~(mod~n)$, then $a+c\equiv b+d~(mod~n)$
7. if $a\equiv b~(mod~n)$ and $c\equiv d~(mod~n)$, then $a\cdot c\equiv b\cdot d~(mod~n)$
8. if $c \cdot a\equiv c \cdot b~(mod~n)$, then it is not necessarily the case that $a \equiv b~(mod~n)$
9. if $a\cdot b \equiv a\cdot c~(mod~n)$ and $gcd(a,n)= 1$, then $b\equiv c~(mod~n)$