\documentclass[11pt]{amsart} \usepackage{graphicx} \usepackage{amssymb} \textwidth = 6.5 in \textheight = 8.3 in \oddsidemargin = 0.0 in \evensidemargin = 0.0 in \topmargin = 0.0 in \headheight = 0.0 in %\headsep = 0.1 in \parskip = 0.2in \parindent = 0.0in \newcommand{\pchoose}[2]{\begin{pmatrix}#1\\ #2\end{pmatrix}} \newcommand{\bchoose}[2]{\begin{bmatrix}#1\\ #2\end{bmatrix}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%% Young diagrams, grace a Francois Bergeron \newdimen\squaresize \squaresize=12pt \newdimen\thickness \thickness=0.4pt \def\square#1{\hbox{\vrule width \thickness \vbox to \squaresize{\hrule height \thickness\vss \hbox to \squaresize{\hss#1\hss} \vss\hrule height\thickness} \unskip\vrule width \thickness} \kern-\thickness} \def\vsquare#1{\vbox{\square{$#1$}}\kern-\thickness} \def\blk{\omit\hskip\squaresize} \def\noir{\vrule height\squaresize width\squaresize}% \def\noir{\gray{\vrule height\squaresize width\squaresize}}% \def\blkk{\omit} \def\young#1{ \vbox{\smallskip\offinterlineskip \halign{&\vsquare{##}\cr #1}}} \def\thisbox#1{\kern-.09ex\fbox{#1}} \def\downbox#1{\lower1.200em\hbox{#1}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \title{Homework \#4} \author{Assigned: February 12, 2020; Due: March 4, 2020 } \begin{document} \maketitle \begin{enumerate} \item Recall on February 6 in class we discussed $$e^{0} + e^{2 \pi i/n} + e^{4 \pi i/n} + \cdots + e^{2(n-1) \pi i/n} = 0$$ and in order to explain why it was true we needed to show that the sum of the real parts equals $0$ and the sum of the imaginary parts is equal to $0$. \begin{enumerate} \item In class I showed the following identity for $n$ even using the fact that $\sin(2 \pi - x) = - \sin(x)$: $$\sin(0) + \sin(2\pi/n) + \sin(4\pi/n) + \cdots + \sin(2(n-1)\pi/n) = 0$$ Do the same thing for $n$ odd (make sure it is clear, at least to yourself, why the argument is slightly different for $n$ even and $n$ odd). \item Using the identity $\cos(x) = - \cos(x + \pi)$, show that $$\cos(0) + \cos(2\pi/n) + \cos(4\pi/n) + \cdots + \cos(2(n-1)\pi/n) = 0$$ for $n$ even. \item Why does the same proof not work for $n$ odd ? Show and explain what goes wrong for the example of $n=3$. \end{enumerate} \item Prove the following identity for $n \geq 1$ by induction on $n$. $$ \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots + \frac{n}{2^n} = \frac{2^{n+1}-n-2}{2^n}~. $$ Prove the same identity using the method of telescoping sums. \item Let $g_1(n) := \frac{1}{1 \cdot2} + \frac{1}{2 \cdot 3} + \frac{1}{3\cdot 4} +\cdots + \frac{1}{n(n+1)}$. \begin{enumerate} \item Conjecture and prove a formula for $g_1(n)$ for $n\geq 1$. \item Now let $g_2(n) := \frac{1}{1 \cdot3} + \frac{1}{3 \cdot 5} + \frac{1}{5\cdot 7} +\cdots + \frac{1}{(2n-1)(2n+1)}$. Conjecture and prove a formula for $g_2(n)$ for $n\geq 1$. \item Define an expression $f_k(n)$ for any $k \geq 1$ so that the formula for $f_k(n)$ agrees $f_1(n) = g_1(n)$ and $f_2(n) = g_2(n)$. Conjecture an expression for the value of this sum and prove it by induction. \end{enumerate} \end{enumerate} \end{document}