MATH 1200: Review for Midterm

1. Prove that for all $n \ge 1$,

$$\frac{1}{2n} \le \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}$$

- 2. Prove or disprove the following statements:
 - (a) For all odd integers n that are not divisible by 3, $n^2 1$ is divisible by 6.
 - (b) For all real numbers a, if a^2 is rational, then a is rational.
 - (c) There exists a rational number q such that q^2 is irrational.
 - (d) There exists a complex number z such that $|z| + |z 1| \le 1$.
- 3. Prove that for all integers $n \ge 1$,

$$1 \cdot 2^{0} + 2 \cdot 2^{1} + 3 \cdot 2^{2} + \dots + (n+1)2^{n} = (n+2)2^{n+1} - 2^{n+2} + 1$$

- 4. Find all complex numbers z such that |z| = 1 and |z + 2i| = 1.
- 5. Express the following complex numbers in the form a + bi where a and b are real numbers.

(a) $\frac{1-2i}{3-i}$ (b) (2-i)(1+i) (c) $(1+3i)^3$

6. Express the following complex numbers in the form $re^{i\theta}$ where r is a positive real number and $0 \le \theta < 2\pi$.

(a)
$$\sqrt{3} - i$$
 (b) $\frac{2+2i}{1-\sqrt{3}i}$ (c) $(1-i)^3$

7. Find the roots of the following polynomials:

(a)
$$z^2 = \sqrt{3} - i$$
 (b) $z^2 + 3z + 1 = 0$ (c) $z^2 + iz + 1 = 0$ (d) $z^2 + 2z + i = 0$

8. Prove that for all integers $n \ge 1$,

$$\left(1 - \frac{1^2}{2^2}\right)\left(1 - \frac{2^2}{3^2}\right)\left(1 - \frac{3^2}{4^2}\right)\cdots\left(1 - \frac{n^2}{(n+1)^2}\right) = \frac{1 \cdot 3 \cdot 5 \cdots (2n+1)}{((n+1)!)^2}$$

- 9. Let a, b and d be integers. Prove or disprove the following
 - (a) If d divides ab, then d divides a or d divides b.
 - (b) If d does not divide ab, then d does not divide a and d does not divide b.
 - (c) If ab divides d, then a divides d and b divides d.