A FEW WORDS ABOUT TELESCOPING SUMS

MIKE ZABROCKI

Say that you want to prove an identity of the form

$$p(1) + p(2) + p(3) + \cdots + p(n) = q(n)$$

where p(x) and q(x) are expressions and n is a non-negative integer. We must have that q(0) = 0 since the left hand side of the equation will be the empty sum when n = 0. One way to go about this is to show that

$$q(r) - q(r-1) = p(r)$$

for all $r \geq 0$, and then write down

$$q(1) - q(0) = p(1)$$

 $q(2) - q(1) = p(2)$
 $q(3) - q(2) = p(3)$

:

$$q(n-1) - q(n-2) = p(n-1)$$

 $q(n) - q(n-1) = p(n)$

Now the sum of the expressions on the right hand side of this equation is

$$p(1) + p(2) + p(3) + \cdots + p(n-1) + p(n)$$

and the sum of the expressions on the left hand side of this equation is

$$(q(1)-q(0))+(q(2)-q(1))+(q(3)-q(2))+\cdots+(q(n-1)-q(n-2))+(q(n)-q(n-1))=q(n)-q(0)=q(n)\;.$$

We conclude therefore that

$$p(1) + p(2) + p(3) + \cdots + p(n-1) + p(n) = q(n)$$
.

Example There are lots of ways of proving the following identity.

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Since $\frac{r(r+1)}{2} - \frac{(r-1)r}{2} = r$, we have

$$\frac{1 \cdot 2}{2} - \frac{0 \cdot 1}{2} = 1$$

$$\frac{2 \cdot 3}{2} - \frac{1 \cdot 2}{2} = 2$$

$$\frac{3 \cdot 4}{2} - \frac{2 \cdot 3}{2} = 3$$

$$\vdots$$

$$\frac{(n-1) \cdot n}{2} - \frac{(n-2) \cdot (n-1)}{2} = n - 1$$

$$\frac{n \cdot (n+1)}{2} - \frac{(n-1) \cdot n}{2} = n$$

The sum of the terms on the left hand side of these equations is $\frac{n(n+1)}{2}$ and the sum of the terms on the right hand side of these equation is $1+2+3+\cdots+(n-1)+n$, therefore they are equal.

Example The formula for the sums of the squares of the first n integers also has a formula as a product.

$$1^{2} + 2^{3} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

The general formula for the sums of the k^{th} powers of the first n integers follows a pattern, but it is not easy to conjecture a general formula.

Calculate (using your best algebra skills ... I'm going to leave the calculation out of this example, but there is something to show here) that $\frac{r(r+1)(2r+1)}{6} - \frac{(r-1)(r-1+1)(2(r-1)+1)}{6} = r^2$ and then this shows that

$$\frac{1 \cdot 2 \cdot 3}{6} - \frac{0 \cdot 1 \cdot 1}{6} = 1^{2}$$

$$\frac{2 \cdot 3 \cdot 5}{6} - \frac{1 \cdot 2 \cdot 3}{6} = 2^{2}$$

$$\frac{3 \cdot 4 \cdot 7}{6} - \frac{2 \cdot 3 \cdot 5}{6} = 3^{2}$$

$$\vdots$$

$$\frac{n(n+1)(2n+1)}{6} - \frac{(n-1)n(2n-1)}{6} = n^{2}$$

The sum of the terms on the left hand side of these equations is $\frac{n(n+1)(2n+1)}{6}$ and the sum of the terms on the right hand side is $1^2 + 2^3 + 3^2 + \cdots + n^2$ and so they must be equal.

Example Define the Fibonacci sequence by $F_0 = 1$, $F_1 = 1$, and for $n \ge 0$, $F_{n+2} = F_{n+1} + F_n$. Say that we want to show that

$$F_0 + F_2 + F_4 + \dots + F_{2n} = F_{2n+1}$$
,

or in words "The sum of the first n Fibonacci numbers indexed by even n is the next Fibonacci number indexed by odd n." So we know that for $r \geq 1$, $F_{2r+1} - F_{2r-1} = F_{2r} + F_{2r-1} - F_{2r-1} = F_{2r}$. Therefore

$$F_{3} - F_{1} = F_{2}$$

$$F_{5} - F_{3} = F_{4}$$

$$F_{7} - F_{5} = F_{6}$$

$$\vdots$$

$$F_{2n-1} - F_{2n-3} = F_{2n-2}$$

$$F_{2n+1} - F_{2n-1} = F_{2n}$$

Since the sum of the left hand side of these equations is $F_{2n+1} - F_1 = F_{2n+1} - F_0$ and the sum of the right hand side of this equation is $F_2 + F_4 + F_6 + \cdots + F_{2n}$, we conclude that

$$F_0 + F_2 + F_4 + \cdots + F_{2n} = F_{2n+1}$$
.

Example Here is a general identity that can be fairly useful:

$$1 \cdot 2 \cdots k + 2 \cdot 3 \cdots (k+1) + 3 \cdot 4 \cdots (k+2) + \cdots + n \cdot (n+1) \cdots (n+k-1)$$
$$= n \cdot (n+1) \cdots (n+k)/(k+1)$$

Observations: (1) if k = 1, then this identity reduces to $1 + 2 + 3 + \cdots + n = n(n+1)/2$. (2) if k = 2, then this identity reduces to $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + n \cdot (n+1) = n(n+1)(n+2)/3$. (3) there is shorthand notation that makes this sum easier to work with. Let $(a)_k = a(a+1)(a+2)\cdots (a+k-1)$, then the identity becomes

$$(1)_k + (2)_k + (3)_k + \dots + (n)_k = (n)_{k+1}/(k+1)$$

We note that

$$r \cdot (r+1) \cdots (r+k)/(k+1) - (r-1) \cdot r \cdots (r+k-1)/(k+1)$$

$$= r \cdot (r+1) \cdots (r+k-1)((r+k) - (r-1))/(k+1)$$

$$= r \cdot (r+1) \cdots (r+k-1).$$

Therefore we have

$$\begin{aligned} 1 \cdot 2 \cdots (k+1)/(k+1) - 0 \cdot 1 \cdots k/(k+1) &= 1 \cdot 2 \cdots k \\ 2 \cdot 3 \cdots (k+2)/(k+1) - 1 \cdot 2 \cdots (k+1)/(k+1) &= 2 \cdot 3 \cdots (k+1) \\ 3 \cdot 4 \cdots (k+3)/(k+1) - 2 \cdot 3 \cdots (k+2)/(k+1) &= 3 \cdot 4 \cdots (k+2) \\ &\vdots \\ (n-1) \cdot n \cdots (n+k-1)/(k+1) - (n-2) \cdot (n-1) \cdots (n+k-2)/(k+1) &= (n-1) \cdot n \cdots (n+k-2) \\ n \cdot (n+1) \cdots (n+k)/(k+1) - (n-1) \cdot (n-2) \cdots (n+k-1)/(k+1) &= n \cdot (n+1) \cdots (n+k-1) \end{aligned}$$

The sum of the entries on the left hand side of these equalities is $n \cdot (n+1) \cdot \cdot \cdot (n+k)/(k+1)$ and the sum of the entries on the right hand side of these equalities is

 $1 \cdot 2 \cdots k + 2 \cdot 3 \cdots (k+1) + 3 \cdot 4 \cdots (k+2) + \cdots + n \cdot (n+1) \cdots (n+k-1)$, therefore the two expressions are equal.

One final observation: It is always possible to express n^k as a sum in the notation $(n)_r$. $n^1=(n)_1,\ n^2=(n)_2-(n)_1,\ n^3=(n)_3-3(n)_2+(n)_1,\ n^4=(n)_4-6(n)_3+7(n)_2-(n)_1$. This can be used to give a sum of $1^k+2^k+3^k+\cdots+n^k$. The coefficients in this expansion are known as the Stirling numbers of the second kind.