THIS IS A TEMPLATE

NAME (AND SSID OR OTHER INFO) CAN GO IN THE AUTHOR FIELD

You can delete all of this text and just start typing, but I am going to include a few examples. Paragraphs are separated by a single blank line. If you type some words they are arranged on the page in a paragraph form.

Mostly, if you want to do something that you haven't done before in LaTeX, then you can easily find how to do this in Google. Just ask a question such as 'how do I insert a picture in latex?' or 'what is the command for the symbol theta in latex?' or 'how do I make a list in latex?'

Here is a good reference for the answer to the last question

```
https://www.overleaf.com/learn/latex/Lists
```

The website [1] has a number of good $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ tutorials.

An equation surrounded by a $\$$ on either side such as $\$ \backslash \operatorname{frac}\{\mathrm{n}(\mathrm{n}+1)\}\{2\} \$$ produces the equation $\frac{n(n+1)}{2}$ as part of the text (this is called an 'in-line equation'). If you want an equation of the text or a formula on a separate line like

$$
\sqrt{\sqrt{2}+\frac{\sqrt{3} \sqrt{5}}{2}}
$$

then you need to surround it by a double dollar sign. If you want to say that you learned about this formula from the text [2] then you should add the book to your bibliography and give it a unique label name (I gave mine the label BB). Next refer to the entry with the command \cite\{BB\}.

But beware. Just because the formula looks pretty does not mean that it is correct. If you would like to number your equations you can wrap your equation in a \backslash begin\{equation\} and \end\{equation\} and a command \label\{myequationname\} doesn't cause the equa- } tion to be labeled, it just makes LaTeX remember what the equation number is.

$$
\begin{equation*}
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n(n+1)^{2}(n+2)}{12} \tag{1}
\end{equation*}
$$

That way if you want to refer to the equation later you just write \eqref \{myequationname\} and then you can point out that when $n=2$ the left hand side of equation (1) is equal to 9 while the right hand side of equation (1) is equal to 6 (and hence it is not true in general).

Instead the equation should read

$$
\begin{equation*}
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4} . \tag{2}
\end{equation*}
$$

Just make sure you give a different name to each equation. At least for $n=2$ the right hand side of equation (2) is also equal to 9 .

References

[1] website, https://www.overleaf.com/
[2] T.S. Eliot, How to prove stuff, Acme Press Inc., 2021.
[3] I consulted with the following classmates: A. Management, J. B. Good.

