
NOTES FROM THE FIRST TWO CLASSES

MIKE ZABROCKI - SEPTEMBER 6 & 11, 2012

main idea of this class

1 + 2 + 3 + · · ·+ n = n(n + 1)/2

to

1r + 2r + · · ·+ nr =???

Just to show what we are up against:

1 + 2 + 3 + · · ·+ n = n(n + 1)/2

12 + 22 + 32 + · · ·+ n2 = n(n + 1)(2n + 1)/6

13 + 23 + · · ·+ n3 = n2(n + 1)2/4

14 + 24 + · · ·+ n4 =???

but there is a sequence that continues:

1 + 2 + 3 + · · ·+ n = n(n + 1)/2

1 · 0 + 2 · 1 + 3 · 2 + · · ·+ n(n− 1) = (n + 1)n(n− 1)/3

1 · 0 · (−1) + 2 · 1 · 0 + 3 · 2 · 1 + · · ·+ n(n− 1)(n− 2) = (n + 1)n(n− 1)(n− 2)/4

...

1·0·(−1) · · · (1−k)+2·1·0 · · · (2−k)+· · ·+n·(n−1)·(n−2) · · · (n−k) = (n+1)n(n−1) · · · (n−k)/(k+2)

Proof either by (a) induction (b) telescoping sums

First class (a) the equality principle
If there is a bijection between a finite set A and a finite set B, then they have the same

number of elements.
(b) the addition principle
say there are sets A1, A2, . . . , An with |Ai| = ai for 1 ≤ i ≤ n and all of the Ai are

disjoint then the number of elements in A1 ∪A2 ∪ · · · ∪An is
1
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a1 + a2 + a3 + · · ·+ an

Example: Consider the set of words in 1 and 0 with three 1s and three 0s.
And paths in a 3× 3
What about?

12 + 22 + · · ·+ n2 = n(n + 1)(2n + 1)/6

( c) multiplication principle
say there are sets A1, A2, . . . , An with |Ai| = ai for 1 ≤ i ≤ n and all of the Ai are disjoint

then the number of elements in A1 ×A2 × · · · ×An = {(x1, x2, . . . , xn) where xi ∈ Ai}
is a1a2 · · · an
Example: lets say I was going to make a cereal with colored shape marshmellows

colors = {pink, yellow, orange, green, purple, red}
shapes = {hearts,moons, stars, clovers, horseshoes, balloons, pots}

I shouldn’t have to list all possible marshmellows, {pink heart, pink moons, pink stars,
. . . , red pots} instead it is much easier to say that there are 6 colors and 7 shapes so there
are 6 · 7 = 42 marshmellows possible.

flavors = {chocolate, strawberry, peanutbutter}
eat it with = {fork, knife, spoon, chopsticks}
Then I could eat chocolate purple ballons with a fork (for example) but there should be
|colors| · |shapes| · |flavors| · |eat it with| = 6 · 7 · 3 · 4 possibilities.

(d) division and subtraction - much harder, avoid doing it.

Application:
S(n, k) = the number of set partitions of {1, 2, . . . , n} into k subsets
E.g.

{123}
{12, 3}, {13, 2}, {1, 23}

{1, 2, 3}

{1234}
{123, 4}, {124, 3}, {134, 2}, {234, 1}, {12, 34}, {13, 24}, {14, 23}
{12, 3, 4}, {13, 2, 4}, {14, 2, 3}, {23, 1, 4}, {24, 1, 3}, {34, 1, 2}

{1, 2, 3, 4}
1
1 1
1 3 1
1 7 6 1
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but I can’t do more of this table by hand because it there are too many set partitions
of 5.

argue:
all set partitions of {1, 2, . . . , n} into k parts = the set partitions where n is by itself

into k − 1 other parts union the set partitions where n is with one of the other k parts of
{1, 2, , n− 1} so

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

1
1 1
1 3 1
1 7 6 1
1 15 25 10 1
1 31 90 65 15 1
· · ·

first class: I covered
(1)

1·0·(−1) · · · (1−k)+2·1·0 · · · (2−k)+· · ·+n·(n−1)·(n−2) · · · (n−k) = (n+1)n(n−1) · · · (n−k)/(k+2)

(2)
addition and multiplication principle
(3)
definitions of S(n, k) = the number of set partitions of {1, 2, . . . , n} into k parts. A set

partition of {1, 2, . . . , n} is a division of {1, 2, . . . , n} into k nonempty and non-intersecting
subsets

(1) S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

for n > 1 and 1 ≤ k ≤ n with the convention that S(n− 1, n) = 0 and S(n, 0) = 0.

Proof. For shorthand, let [n] := {1, 2, ..., n}. The set partitions of [n] into k parts can be
divided into two sets, those that have n in a part by itself and those that have n in a part
with other values from [n− 1]. By the addition principle we have

S(n, k) = # set partitions with n in a set alone + # set partitions where n is not alone

The number of set partitions of [n] into k parts with n in a part by itself is isomorphic
to the set of set partitions of [n− 1] into k − 1 parts by throwing away the set containing
just n. This means that the number of set partitions of [n] into k parts with n in a set all
by itself is S(n− 1, k − 1).

For a set partition P of [n] with k parts and n is in a part with other elements, then
let x be a value between 1 and k that indicates which of the k parts n is contained in
and P ′ be the set partition of [n − 1] into k parts that is formed by removing n from P .
Clearly if we know (x, P ′) then it is possible to recover P , and if we know P it is possible
to recover both x and P ′. Hence, there are the same number of these objects. Since there
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are k possible values of x and there are S(n − 1, k) possible set partitions P ′, then there
are in total kS(n− 1, k) possible set partitions of [n] into k parts where n is not in a part
by itself.

Therefore (1) holds true. �

This recursion allows us to compute more of the table than before.
1
1 1
1 3 1
1 7 6 1
1 15 25 10 1
1 31 90 65 15 1

...

There is an application for set partitions in terms of algebra.
Define for k and integer with k > 0, set:

(x)k = x(x− 1)(x− 2) · · · (x− k + 1)

such that there are k terms in the product.
Examples: (x)1 = x, (x)2 = x(x− 1), (x)3 = x(x− 1)(x− 2), . . .
This is new notation that makes some of our formulas simpler.
Example: Remember the identity that we

1·0·(−1) · · · (1−k)+2·1·0 · · · (2−k)+· · ·+n·(n−1)·(n−2) · · · (n−k) = (n+1)n(n−1) · · · (n−k)/(k+2)

which is kind of horrible notation is equivalent to

(1)k+1 + (2)k+1 + · · ·+ (n)k+1 = (n + 1)k+2/(k + 2)

Now it arises that the table of numbers S(n, k) appear in the expansion of xn in terms
of (x)k. In particular we have

(2) xn =

n∑
k=1

S(n, k)(x)k

Example:

(x)1 = x1

(x)1 + (x)2 = x + x(x− 1) = x + x2 − x = x2

(x)1 + 3(x)2 + (x)3 = x(x− 1)(x− 2) + 3x(x− 1) + x = x3

(x)1 + 7(x)2 + 6(x)3 + (x)4 = x + 7x(x− 1) + 6x(x− 1)(x− 2) + x(x− 1)(x− 2)(x− 3)

= x + 7(x2 − x) + 6(x3 − 3x2 + 2x) + x4 − 6x3 + 11x2 − 6x

= x4
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So it should seem surprising that it is even possible to give a formula for xn in terms
of (x)k, and hopefully it is even more surprising that these coefficients are counted by
combinatorial objects called set partitions.

Here is the quick proof that this formula holds:

Proof. We will prove this by induction on n. We have already shown the base case for
n = 1, 2, 3, 4 above.

Assume that (2) holds for some fixed n. Then we have

xn+1 = xn · x =

n∑
k=1

S(n, k)(x)k · x(3)

=

n∑
k=1

S(n, k)(x)k(x− k + k)(4)

=

n∑
k=1

S(n, k)(x)k(x− k) +

n∑
k=1

kS(n, k)(x)k(5)

=

n∑
k=1

S(n, k)(x)k+1 +

n∑
k=1

kS(n, k)(x)k(6)

=
n+1∑
k=2

S(n, k − 1)(x)k +
n∑

k=1

kS(n, k)(x)k(7)

= S(n, n)(x)n+1 +
n∑

k=2

S(n, k − 1)(x)k +
n∑

k=2

kS(n, k)(x)k + S(n, 1)(x)1(8)

= S(n, n)(x)n+1 +
n∑

k=2

(S(n, k − 1) + kS(n, k))(x)k + S(n, 1)(x)1(9)

= S(n, n)(x)n+1 +
n∑

k=2

S(n + 1, k)(x)k + S(n, 1)(x)1 .(10)

Some comments about this calculation: from step (6) to step (7) we did a shift of indices
k → k−1 (but they are the same sum). From step (7) to (8) we broke off the k = n+1 term
of the first sum and the k = 1 term of the second sum. From step (9) to (10) we applied (1)
with n→ n+1. Now recall that S(n, n) = S(n+1, n+1) = 1 and S(n, 1) = S(n+1, 1) = 1,
hence we can rewrite the first and last term so that they are consistent with the other terms
in this sum and hence we have shown

xn+1 =

n+1∑
k=1

S(n + 1, k)(x)k

which is equation (2) with n→ n + 1.
Therefore by the principle of mathematical induction, (2) is true for all n ≥ 1. �
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Because of the equation
n∑

i=1

(i)k+1 = (1)k+1 + (2)k+1 + · · ·+ (n)k+1 = (n + 1)k+2/(k + 2)

that we wrote down above, this allows us to sum powers of ir.

n∑
i=1

i1 =
n∑

i=1

(i)1 = (n + 1)2/2 = (n + 1)n/2

n∑
i=1

i2 =
n∑

i=1

((i)1 + (i)2) =
n∑

i=1

(i)1 +
n∑

i=1

(i)2 = (n + 1)2/2 + (n + 1)3/3

With a little algebra we can show:

(n+1)2/2+(n+1)3/3 = (n+1)n/2+(n+1)n(n−1)/3 = (n+1)n(1/2+(n−1)/3) = n(n+1)(2n+1)/6

n∑
i=1

i3 =

n∑
i=1

((i)1 + 3(i)2 + (i)3) = (n + 1)2/2 + 3(n + 1)3/3 + (n + 1)4/4

The right hand side is a polynomial in n of degree 4 and we can calculate directly that,

(n+1)2/2+3(n+1)3/3+(n+1)4/4 = (n+1)n/2+(n+1)n(n−1)+(n+1)n(n−1)(n−2)/4 = n2(n+1)2/4

And the formula for the sum of the 4th powers of i is
n∑

i=1

i4 =
n∑

i=1

((i)1 +7(i)2 +6(i)3 +(i)4) = (n+1)2/2+7(n+1)3/3+6(n+1)4/4+(n+1)5/5

and the right hand side in the form it is in is cleaner than calculating the polynomial:

(n+ 1)2/2 + 7(n+ 1)3/3 + 6(n+ 1)4/4 + (n+ 1)5/5 = n(n+ 1)(2n+ 1)(1− 3n+ 3n2)/30 .

What is great about what we have done is here is that it is difficult to conjecture the
right hand side of this sum or for higher powers (so that one might prove it by some other
means). Instead here we have proven an explicit formula which works for all powers of r,
that is:

n∑
i=1

ir =

r∑
k=1

S(r, k)(n + 1)k+1/(k + 1) .


