
NOTES ON OCT 25, 2012

MIKE ZABROCKI

I wanted you do the problems on the worksheet that I gave you last time. Only a few
people had done their problem. Even if it was a matter of just trying, it on the board so
that we can see what was right and what was wrong, this was a good thing. We had a few
people put up their answers:

(5) the number of partitions of n with at most 8 parts of any given size.
(28) the number of partitions of n with Durfee square of size 3× 3 and all even parts.
(32) the number of partitions of n with a Durfee square of even size and all parts even.
hmmm...there was one more but it is 4 days later and I can’t remember which one it

was.

Someone asked me if I could post the answers and I agreed reluctantly that I would post
the answers to some them. I am rescinding that statement. I will post the solutions/answers
to any that people agree to present a solution to in class. I will check any answers that
people want to verify with me through email. But if I post the answers, then this question
becomes an entirely different problem. Rather than learning how to derive the answers
yourself, you only have to match your answer/explanation against my expression. The
matching worksheet already has a bunch of ‘descriptions’ and ‘expressions’ so if you need
examples, then you have 18 of them right there. Here are three more right here.

The instructions read: Apply the addition or the multiplication principle of generating
functions to give the generating function for the following sequences of numbers.

(5) the number of partitions of n with at most 8 parts of any given size.

The generating function for the partitions consisting only of parts of size i with at most
8 parts is equal to

1 + xi + x2i + · · ·+ x8i =
1− x9i

1− xi

The generating function for the number of partitions of n with at most 8 parts of any
given size will be the product of the generating functions of the partitions consisting only
of parts of size i with at most 8 parts for i ≥ 1 because each partition can be decomposed
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into the parts of size i for i ≥ 1. Therefore the generating function is equal to∏
i≥0

1− x9i

1− xi

(28) the number of partitions of n with Durfee square of size 3× 3 and all even parts.

A partition with a 3 × 3 Durfee square and all parts even consists of ( a 3 × 3 Durfee
square, a partition which lies above the Durfee square consisting only of parts of size 2, a
partition that lies to the right of the Durfee square consisting of exactly three parts and all
parts odd ). The third entry in this tuple can be also be described as a partition consisting
of an odd number of columns of size 3, an even number of columns of size 2 and an even
number of columns of size 1.

· · ·· · ·· · · ︸ ︷︷ ︸
odd number

︸ ︷︷ ︸
even number

︸ ︷︷ ︸
even number

This decomposition of a partition into these pieces implies that we can apply the
MPofGFs and the the generating function for this whole set of partitions is equal to the
product of the generating function for partitions with parts of size 2 only = 1

1−x2 , the gen-

erating function for a 3×3 Durfee square = x3, the generating function for an odd number

of columns of size 3 x3 + x9 + x15 + x21 + · · · = x3

1−x6 , the generating function for the even

number of columns of length 2 = 1 + x4 + x8 + x12 + · · · = 1
1−x4 , the generating function

for an even number of columns of length 1 = 1
1−x2 . Therefore the generating function for

the number of partitions of n with Durfee square of size 3×3 and all even parts is equal to

1

1− x2
x3

x3

(1− x2)(1− x4)(1− x6)
=

x6

(1− x2)2(1− x4)(1− x6)

(32) the number of partitions of n with a Durfee square of even size and all parts even

A partition of n with a Durfee square of size 2k and all parts even consists of ( a Durfee
square of size 2k × 2k, a partition which lies above the Durfee square with all parts even
and maximum part 2k, a partition which lies to the right of the Durfee square where all
parts are even and the length is less than or equal to 2k). A “partition where all parts are
even and the length is less than or equal to 2k” can also be described as some even number
of columns of size i for 1 ≤ i ≤ 2k. Since the generating function for a even number of
columns of size i is 1

1−x2i hence the generating function for the partitions which lie to the

right of the 2k × 2k Durfee square is equal to
∏2k

i=1
1

1−x2i . The partitions which are above
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the Durfee square consist only of even parts between 1 and 2k, hence by the MPofGFs
the generating function for the partitions which lies above the Durfee square with all parts

even and maximum part 2k is equal to
∏k

i=1
1

1−x2i . The Durfee square itself has generating

function x4k
2
. Hence the generating function for partitions of n with a Durfee square of

size 2k and all parts even is

x4k
2

k∏
i=1

1

1− x2i

2k∏
i=1

1

1− x2i
.

Now since all partitions of n with a Durfee square of even size and all parts even are
either the empty partition or have a Durfee square of size 2k × 2k for k ≥ 1, then the
generating function is

1 +
∑
k≥1

x4k
2

k∏
i=1

1

1− x2i

2k∏
i=1

1

1− x2i
.

I expect you do the rest of these problems on your own. You won’t learn any more by
just reading. You have to learn to figure these out yourself.

The next thing that we are going to cover is Pólya enumeration. This requires that we
know what the concept of a group is. If you have had a course in algebra before you have
likely encountered the definition of a group before. You have all encountered the concept
of a group. Let me tell you what one is and then show you that you have lots of examples:

A group is a set of elements G (possibly finite, possibly infinite) with a binary operation
denoted ∗. That is ∗ : G×G→ G and usually we denote it as a∗ b ∈ G for a, b ∈ G. There
are a few properties that this binary operation has in order to be a group.

(1) The product is associative, that is, for a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.
(2) There is an element e ∈ G such that g = e ∗ g = g ∗ e for all g ∈ G.
(3) For each element in a ∈ G, there is another element a ∈ G (called the inverse of a)

such that a ∗ a = a ∗ a = e (in many cases, we write the element a = a−1 but just
remember that this does not mean 1/a).

Here are some examples that you are probably familiar with:

(1) The integers Z with the binary operation of +. This example has the identity
element 0 because 0 + a = a + 0 = a for all a ∈ Z. For every integer a, a = −a has
the property that a + a = 0. Also addition is associative.

(2) The rational numbers except 0, Q\{0}, with multiplication · is the binary operation
is an example of a group. In this example the identity element is 1 because 1 · a =
a · 1 = a for all a ∈ Q\{0}. Moreover if a ∈ Q\{0}, then a = 1/a is an element
such that aa = aa = 1. Also multiplication is associative.
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(3) The group of permutations of 3, G = {123, 132, 213, 231, 312, 321}, with a1a2a3 ◦
b1b2b3 = ba1ba2ba3 . This example is a little different than the other examples
because it is not immediately familiar to us that the multiplication is associative.
In fact, it is since

(a1a2a3 ◦ b1b2b3) ◦ c1c2c3 = ba1ba2ba3 ◦ c1c2c3 = cba1 cba2 cba3

a1a2a3 ◦ (b1b2b3 ◦ c1c2c3) = a1a2a3 ◦ cb1cb2cb3
and if you understand this properly, you can see that these are the same thing.
Now the identity of this group is the element 123 since 123 ◦ b1b2b3 = b1b2b3. It is
also the case that a1a2a3 ◦ 123 = a1a2a3. You can check that the inverse element
exists for for each of the 6 permutations in this group. Check that 123, 132, 213
and 321 are equal to their own inverse, 231 and 312 are inverses of each other.

OK these are three examples of groups and kind of cover a small range of examples, but
groups are everywhere. In order to understand a definition clearly it is also a good idea to
try to understand an example of something which is not a group.

(1) Take for example the integers except 0, Z\{0}, with the binary operation of ·
multiplication. This is an example of something which is not a group because there
is nothing you can multiply the element 2 by in order to get 1 so there is no inverse
of the element 2 (well, you can multiply it by 1/2, but that isn’t an integer and
this is why Q\{0} is a group and Z\{0} is not).

(2) None of the integers Z, rational numbers Q, real numbers R or complex numbers C
are groups with multiplication as the operation since they all include 0 and there is
nothing you can multiply 0 by and get 1 (the identity element of the group). You
might ask, what happens if I “throw in infinity and then define 0 · ∞ =∞ · 0 = 1”
This is a great idea but it just kicks the problem to somewhere else in your group
since ∞ · (0 · 2) = ∞ · 0 = 1, but (∞ · 0) · 2 = 1 · 2 = 2. It is the case that all of
Q\{0}, R\{0}, C\{0} are groups with multiplication as the binary operation, but
if they include 0 then they are not a group.


