
NOTES ON NOV 27, 2012

MIKE ZABROCKI

I answered questions about the homework problems. One of them was the second prob-
lem about generating functions. Someone simply asked ‘how do you do it?’ It is hard to
give a hint on this one with out shoving you in the right direction. The problem was to
prove a formula (which was part of the problem but I don’t remember what it is right now)
for the S(n, k). But in problem number (1) you were asked to show that the generating

function for S(n, k) is equal to eu(e
x−1). Armed with this piece of information you know

that the coefficient of uk xn

n! in eu(e
x−1) is S(n, k), but you also have that

eu(e
x−1) =

∑
d≥0

ud
(ex − 1)d

d!

Now you should notice that you can use the binomial theorem to expand (ex − 1)d =∑d
i=0

(
d
i

)
(−1)ie(d−i)x and now take the coefficient of uk xn

n! in the expression you get there.

At this point there isn’t too much left to do but remember that the coefficient of xn

n! in ecx

is equal to cn.

Then I knew that I wanted to talk a little bit about the first and the third problems
in that section. I said in the last class that ‘all’ you had to do was show that B(x, u) :=
1 +

∑
n≥1

∑n
k=1 S(n, k)uk xn

n! satisfied the differential equation

∂

∂x
B(x, u) = uB(x, u) + u

∂

∂u
B(x, u)

and you were done, but that is a little inaccurate. It is the major step of the proof, but
there is an argument to be made to verify that you really are done.

The coefficients S(n, k) are defined by the recurrence S(n+1, k) = S(n, k−1)+kS(n, k)
for n ≥ 0 and k ≥ 1 and the initial conditions that S(0, 0) = 1 and S(n, 0) = S(0, n) = 0

for n > 0. What you need to do is show that the coefficients in the series for eu(e
x−1) also

satisfies the same defining relations.
There are three steps that you need to complete in order to show this. First, let V (x, u)

be a function with a taylor series V (x, u) =
∑

n,k≥0 an,ku
k xn

n! and show that V (x, u) satisfies

∂

∂x
V (x, u) = uV (x, u) + u

∂

∂u
V (x, u)

if and only if

an+1,k = an,k−1 + kan,k
1
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for n ≥ 0 and k ≥ 1. This is more or less exactly what you needed to do in order to show
that B(x, u) satisfies this equation, but you also need to go backwards. Second you need

to show that eu(e
x−1) satisfies this differential equation. This is a relatively easy calculus

calculation. Finally, you need to show that the coefficients satisfies the same base case.

This amounts to showing B(x, u)
∣∣∣
x0

= eu(e
x−1)

∣∣∣
x0

and B(x, u)
∣∣∣
u0

= eu(e
x−1)

∣∣∣
u0

. Since, both

of these coefficients is equal to 1, you have shown that the coefficients satisfy the same base
case and hence an,k = Sn,k for all n, k ≥ 0.

Next I talked about the formula for necklaces. I drew the picture of a necklace with
beads hanging from a chain and I indicated that the motions of the necklace were Rr for
1 ≤ r ≤ n where this means take r beads from the right hand side and move them to
the left hand side (note: for convenience I switched directions from the notation I used on
November 20, but really this affects nothing significantly).

Notice what happens to bead number i under the action of Rr. Bead i is sent to i+ r;
then bead i+ r is sent to i+ 2r; bead i+ 2r ends up where i+ 3r was located; etc. This
will make a cycle of length d when i + dr ends up where bead i currently is. In order for
this to happen dr must be a multiple of n (the total number of beads and this cycle will
be exactly of length d if dr = lcm(n, r).

There is a well known formula for lcm(n, r) in terms of the greatest common divisor.

Lemma 1. For positive integers a and b, lcm(a, b) = ab
gcd(a,b) .

Take for example the lcm(10, 12) = 60, this formula says it should be 10 · 12 = 120
divided by the gcd(10, 12) = 2. I provided a quick proof of this fact just to convince you
that it was true by looking at the prime factorizations of a, b, gcd(a, b) and lcm(a, b), but
I won’t bother to write it down here because it is based on the fundamental theorem of
arithmetic and a few other properties of primes which I am assuming anyway. I might as
well assume that this fact is true. There was another fact that I assumed was true that
uses some properties of integers that I don’t think that we will get into.

Lemma 2. For positive integers c, d, e,

gcd(d, e) = 1 if and only if gcd(cd, ce) = c

Take again the example of gcd(10, 12) = 2 and compare this to gcd(5, 6) = 1.
Now I claim that I have enough information to write down the formula for the number

of necklaces with n beads using k colors and this formula is written in terms of a quantity
φ(d) = the number of integers e between 1 and d that are relatively prime to d.
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(1) #necklaces with n beads colored with k colors =
1

n

∑
d|n

φ(d)kn/d

I am now thinking about it and I am not sure I mentioned why this is even useful. If you
don’t know a formula for φ(d), then we have given one formula that is hard to compute
(Burnside’s lemma) in terms of another (the formula in equation (1) in terms of φ(d)).
The thing is that there are formulas for φ(d). If d has a factorization into distinct primes
pa11 p

a2
2 · · · p

a`
` then

φ(d) = (pa11 − p
a1−1
1 )(pa22 − p

a2−1
2 ) · · · (pa`` − p

a`−1
1 ) .

For example φ(8) = 23 − 22 = 8− 4 = 4. But this is a side note.
There are n group elements which act on this necklace R1, R2, R3, . . . , Rn = R0 = e. We

have already deduced that Rr consists of cycles of length d if and only if lcm(r, n) = rd and
since lcm(r, n) = rn/gcd(n, r) then it must be that the length of the cycle is d = n/gcd(n, r)
(verify that this actually happens on an example) and so gcd(n, r) = n/d.

But because of Lemma 2 above, we have that gcd(n, r) = n/d if and only if gcd(d, rd/n) =
1. This means that for every e = rd/n which is relatively prime to 1, there is an r = n

d e.
This says that there is a bijection between the set Φ(d) = {e : gcd(d, e) = 1} and the set
Ψ(d) = {r : gcd(n, r) = n/d}, and moreover the bijection from Φ(d) to Ψ(d) is to multiply
the elements of Φ(d) by n/d.

Therefore we know that there are φ(d) = |Φ(d)| elements with n/d cycles of length d

and so there are kn/d ways of coloring each of those n/d cycles. Burnside’s Lemma then
says that

# necklaces =
1

n

n∑
r=1

Fix(Rr) =
1

n

n∑
r=1

kgcd(n,r) =
1

n

∑
d|n

φ(d)kn/d .

Recall that for our example of n = 8, we had the table of

g ∈ G cycle notation
R0 = R8 (1)(2)(3)(4)(5)(6)(7)(8)
R1 (18765432)
R2 (1753)(2864)
R3 (16385274)
R4 (15)(26)(37)(48)
R5 (147258361)
R6 (1357)(2468)
R7 (12345678)

And when we grouped them by the elements that consist of n/d cycles of length d. Then
the following table agrees with this construction.
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integers between 1 and d motions which have n/d
d = cycle length that are relatively prime to d cycles of length d

8 {1, 3, 5, 7} {R1, R3, R5, R7}
4 {1, 3} {R2, R6}
2 {1} {R4}
1 {1} {R8}

For this example the ways of coloring a necklace with 8 beads and k colors is equal to

1

8
(k8 + k4 + 2k2 + 4k)

We can also apply Polya’s theorem to get a refinement of this formula. Since the gen-

erating function for the ways of coloring a single cycle of length d is equal to
∑k

i=1 x
d
i ,

then by the multiplication principle of generating functions, the generating function for

the number of ways of coloring n/d cycles of length d is equal to
(∑k

i=1 x
d
i

)n/d
. Moreover,

Polya’s Theorem says that the generating function for the number of ways of coloring the
necklaces with k colored beads will be

1

n

∑
d|n

φ(d)

(
k∑

i=1

xdi

)n/d

.

Lets try this in practice for n = 8, the generating function will be

1

8
((R+B)8 + (R2 +B2)4 + 2(R4 +B4)2 + 4(R8 +B8))

Lets expand this with Sage (although I also did it by hand for a single coefficient):

sage: ( (R+B)^8 + (R^2+B^2)^4 + 2*(R^4 + B^4)^2 + 4*(R^8+B^8))/8

1/8*(B + R)^8 + 1/8*(B^2 + R^2)^4 + 1/4*(B^4 + R^4)^2 + 1/2*B^8 + 1/2*R^8

sage: expand(_)

B^8 + B^7*R + 4*B^6*R^2 + 7*B^5*R^3 + 10*B^4*R^4 + 7*B^3*R^5 + 4*B^2*R^6

+ B*R^7 + R^8

What this says is that there are 7 necklaces with 5 blue beads and 3 red beads, they are

BBBBBrrr, BBBBrBrr, BBBrBBrr, BBrBBBrr,
BrBBBBrr, BBBrBrBr, BBrBBrBr

Check very carefully and I THINK that all 7 of these are different and if they are, then
every necklace is equivalent to one of these.

Next time I want you to work on the combinatorics problem that I posed last time:

How many colorings of the graph

are there using k colors such that each color is used at most twice?


