
NOTES ON OCT 2, 2012

MIKE ZABROCKI

I started off with an example that used complex numbers and this was not quite familiar
to everyone. Last time we figured out that if we started with the generating function
A(x) = a0 +a1x+a2x

2 + · · · , then it is possible to give the generating function for just the
even terms in a three step process. First add A(x) and A(−x) and we find the generating
function for 2a0, 0, 2a2, 0, 2a4, 0, 2a6, 0, . . .

A(x) +A(−x) = 2a0 + 2a2x
2 + 2a4x

4 + 2a6x
6 + · · ·

then divide by two and find the generating function for a0, 0, a2, 0, a4, 0, a6, 0, . . .,

1

2
(A(x) +A(−x)) = a0 + a2x

2 + a4x
4 + a6x

6 + · · ·

then replace x with
√
x and find

1

2
(A(
√
x) +A(−

√
x)) = a0 + a2x+ a4x

2 + a6x
3 + · · ·

and this is the generating function for the sequence a0, a2, a4, a6, . . ..

Now what if we wanted to generalize this process to pick out every third term instead of
every second? For this we need to know why every other term of the sequence cancelled.
The reason is that 1r + (−1)r = 0 if r is odd, and 1r + (−1)r = 2 if r is even. The
generalization of this statement is in complex numbers.

eix = cos(x) + isin(x)

If I set ζr = e2πi/r (this is a definition), then (ζr)
r = e2πi = 1 and so

0 = (ζr)
r − 1 = (ζr − 1)(ζr−1r + ζr−2r + · · ·+ ζr + 1)

now since ζr−1 is not 0 and the product is 0, this means that ζr−1r +ζr−2r + · · ·+ζr+1 = 0.

Example: ζ3 = e2πi/3 = −1
2 + i

√
3
2 , ζ23 = (−12 + i

√
3
2 )2 = 1

4 −
3
4)− i

√
3
2 = −1

2 − i
√
3
2 . Then

we see

ζ3 + ζ23 + 1 = (
−1

2
+ i

√
3

2
) + (−1

2
− i
√

3

2
) + 1 = 0 .

Example: ζ2 = −1, and ζ2 + 1 = 0.
1
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Example: ζ4 = I, and ζ24 = −1, ζ34 = −I and so

1 + ζ4 + ζ24 + ζ34 = 1 + I − 1− I = 0 .

This is what we use to generalize what we did for the r = 2 case to pick out every other
term. Step 1 is to add up A(x), A(ζ3x) and A(ζ23x). We see

A(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + · · ·

A(ζ3x) = a0 + a1ζ3x+ a2ζ
2
3x

2 + a3x
3 + a4ζ3x

4 + a5ζ
2
3x

5 + a6x
6 + · · ·

A(ζ23x) = a0 + a1ζ
2
3x+ a2ζ3x

2 + a3x
3 + a4ζ

2
3x

4 + a5ζ3x
5 + a6x

6 + · · ·

and so their sum is equal to

A(x)+A(ζ3x)+A(ζ23x) = 3a0+a1(1+ζ3+ζ23 )x+a2(1+ζ23 +ζ3)x
2+3a3x

3+a4(1+ζ3+ζ23 )x4

+a5(1 + ζ23 + ζ3)x
5 + 3a6x

6 + · · · = 3a0 + 3a3x
3 + 3a6x

6 + · · ·

This is the generating function for 3a0, 0, 0, 3a3, 0, 0, 3a6, 0, 0, . . .. The next step is to divide
this expression by 3 and the final step is to replace x by 3

√
x. The final result is

1

3
(A( 3
√
x) +A(ζ3

3
√
x) +A(ζ23

3
√
x)) = a0 + a3x+ a6x

2 + · · ·

The example that I did in class worked OK on the computer, but I didn’t know how
to make the computer do the algebra for us. The suggestion was that we take every third
term of 1

1−x = 1 + x+ x2 + x3 + x4 + · · · . If we do this we should get the same expression
back. We find that

sage: taylor(1/(1-x),x,0,10)

x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

sage: zeta3 = exp(2*pi*I/3); zeta3

sage: taylor(1/(1-x) + 1/(1-zeta3*x) + 1/(1-zeta3^2*x),x,0,10)

3*x^9 + 3*x^6 + 3*x^3 + 3

sage: taylor(1/3*(1/(1-x) + 1/(1-zeta3*x) + 1/(1-zeta3^2*x)).subs(x=x^(1/3)),x,0,10)

x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

So what this shows is that the series for this expression has the same series as 1/(1-x) but
I couldn’t figure out how to make the package do the simplification and show that

1

3

(
1

1− 3
√
x

+
1

1− ζ3 3
√
x

+
1

1− ζ23 3
√
x

)
=

1

1− x

instead you have to do the algebra yourself....
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1

3

(
1

1− 3
√
x

+
1

1− ζ3 3
√
x

+
1

1− ζ23 3
√
x

)
=

1

3

(
(1− ζ3 3

√
x)(1− ζ23 3

√
x) + (1− 3

√
x)(1− ζ23 3

√
x) + (1− 3

√
x)(1− ζ3 3

√
x)

(1− 3
√
x)(1− ζ3 3

√
x)(1− ζ23 3

√
x)

)
=

1

3

(
(1− ζ3 3

√
x− ζ23 3

√
x+ x2/3) + (1− 3

√
x− ζ23 3

√
x+ ζ23x

2/3) + (1− 3
√
x− ζ3 3

√
x+ ζ3x

2/3)

(1− 3
√
x− ζ3 3

√
x+ ζ3x2/3)(1− ζ23 3

√
x)

)
=

1

3

(
3

(1− 3
√
x− ζ3 3

√
x+ ζ3x2/3 − ζ23 3

√
x+ ζ23x

2/3 + x2/3 − x)

)
=

1

3

(
3

(1− x)

)
=

1

(1− x)
=

I recommend that you experiment both by hand and with the computer to see that
complex numbers work the way that you think that they do. Since x2−y2 = (x+y)(x−y)
then it is also the case that x2 + y2 = (x + iy)(x − iy). So it is possible to divide one
complex number of the form a+ bi by c+ di (where a, b, c, d are all real numbers) and you
will be able to put it in the form e + fi by multiplying by the appropriate thing to clear
the denominator of the complex numbers. So as an exercise, I suggest you try to show that

a+ bi

c+ di
=
ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

.

I then jumped to simpler example. How do we shift the generating function for a sequence
and multiply by coefficients, etc.

sequence generating function expression
a0, a1, a2, a3, a4, a5, a6, . . . a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · A(x)

0, 0, 0, a0, a1, a2, a3, a4, . . . a0x
3 + a1x

4 + a2x
5 + a3x

6 + a4x
7 + · · · x3A(x)

a3, a4, a5, a6, a7, a8, a9, . . . a3 + a4x+ a5x
2 + a6x

3 + a7x
4 + a8x

5 + · · · (A(x)− a0 − a1x− a2x2)/x3
0a0, 1a1, 2a2, 3a3, 4a4, . . . a1x+ 2a2x

2 + 3a3x
3 + 4a4x

4 + 5a5x
5 + · · · xA′(x)(

0
k

)
a0,
(
1
k

)
a1,
(
2
k

)
a2,
(
3
k

)
a3, . . .

∑
n≥0

(
n
k

)
an xkA(k)(x)

I then showed how to get the generating function for the Fibonacci numbers. Define
F0 = 1 and F1 = 1 and Fn+1 = Fn + Fn−1 for n ≥ 1. The first few terms of the sequence
are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .
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By definition the generating function is given by

F (x) =
∑
n≥0

Fnx
n = F0 + F1x+ F2x

2 + F3x
3 + · · · .

It follows then that,

F (x) = 1 + x+
∑
n≥2

(Fn−1 + Fn−2)x
n

= 1 + (x+ F1x
2 + F2x

3 + F3x
4 + · · · ) + (F0x

2 + F1x
3 + F2x

4 + F3x
5 + · · · )

= 1 + xF (x) + x2F (x)

By rearranging the terms of this formula we have

F (x)− xF (x)− x2F (x) = (1− x− x2)F (x) = 1

so

F (x) =
1

1− x− x2
.

I quickly checked this on sage and found

sage: taylor(1/(1-x-x^2),x,0,10)

89*x^10 + 55*x^9 + 34*x^8 + 21*x^7 + 13*x^6 + 8*x^5 + 5*x^4 + 3*x^3

+ 2*x^2 + x + 1

I will use this next time to show formulas that relate the Fibonacci numbers.

Exercises: Find formulas for the following generating functions (you don’t need to sim-
plify the expressions, but use the tools that we have developed in the last few days to write
down an an expression).

(1)
∑

n≥0 F3nx
n

(2)
∑

k≥0
(
n
2k

)
x2k

(3)
∑

n≥0
(
2n+1

3

)
xn

(4)
∑

n≥0
(
n
3

)
x2n+1

(5)
∑

n≥0
(
n
2

)
Fnx

n

(6)
∑

n≥0
(
n
2

)
Fn+4x

n

(7)
∑

n≥0
(
n+2
2

)(
n−2
2

)
xn

Given that A(x) =
∑

n≥0 anx
n and B(x) =

∑
n≥0 bnx

n are the generating functions for
the sequences a0, a1, a2, a3, . . . and b0, b1, b2, b3, . . . respectively, find an expression for the
generating function for the following sequences.

(8) a0, 2a1, 4a2, 8a3, 16a4, . . .
(9) 0, a1, 2

2a2, 3
2a3, 4

2a4, 5
2a5, . . .

(10) a0, a0, a1, a1, a2, a2, a3, a3, . . .
(11) a0, b0, a1, b1, a2, b2, . . .
(12) a0, b1, a2, b3, a4, b5, . . .
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(13) a1, a5, a9, a13, a15, a19, . . .
(14) a0 + b0, a0 − b0, a1 + b1, a1 − b1, a2 + b2, a2 − b2, . . .


