
NOTES ON OCT 4, 2012

MIKE ZABROCKI

I had planned a midterm on Oct 11. I can’t be there that day. I am canceling my office
hours that day and I will be available on Tuesday Oct 9 from 4-5pm instead. I am tempted
to give a take home miterm instead of the in class one (which is very limited by the time).
We will see....

Consider what happens when you multiply two generating functions

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · ·

and
g(x) = b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + · · ·
then if you expand it term by term you see

f(x)g(x) = a0b0 + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x
2 + · · ·

Observe that in the expansion that the coefficient of xn (for n = 0, 1, 2 only because I didn’t
go further) that the subscripts of aibj add up to the exponent of x. If we expand all terms
of the series then we reason that this always happens and we have that the coefficient of
xn is

∑
i+j=n aibj . That is,

f(x)g(x) =
∑
n≥0

 ∑
i+j=n

aibj

xn .

I declared that if ar and bs have a combinatorial meaning, then arbs has a combinatorial
meaning and so does

∑
r+s=n arbs. I formulated this as a mathematical principle.

Principle 1. (The Multiplication Principle of Generating Functions) Assume that
ar is equal to the number of widgets of ‘size’ r and bs is equal to the number of doodles of
‘size’ s, then we say that f(x) is the generating function for the number of widgets of ‘size’
n and g(x) is the generating function for the number of doodles of ‘size’ n and

f(x)g(x) =
∑
n≥0

 ∑
i+j=n

aibj

xn

is the generating function for the pairs of elements (x, y) where x is a widget of ‘size’ i and
y is a doodle of ‘size’ j with i+ j = n.

So what I have done is I have applied the addition principle and the multiplication
principle to count such pairs (x, y) where x is a widget and y is a doodle where I break
the set of pairs of ‘size’ n into those where x is of size i and y is of size n − i. In order
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to make the statement of the principle above I had to apply the addition principle so that
the widget was of size i where 0 ≤ i ≤ n.

Remark 2. I intentionally put the word ‘size’ in quotes because I haven’t been super precise
about what I mean. This really means that if I group the objects that I am calling widgets
into groups by a grading (something that happens often in combinatorics) then the word
‘size’ here represents an association with the grading. The word ‘size’ may not be accurate.
Consider the example below when I am talking about change for n cents, then the ‘size’ in
that case means the number of cents. I am using ‘size’ in an abstract way to mean whatever
term you are grading by.

Remark 3. This notation of expressing f(x) as the generating function for the number of
widgets of ‘size’ n and g(x) the generating function for the number of doodles of ‘size’ n is
my own. You won’t see it in the textbook and if you google the words ‘widgets’ and ‘doodles’
you are likely to find web pages written by me. I just find this a convenient way to think
about combinatorics of generating functions in the case when the generating functions are
for sequences of non-negative integers and there is a combinatorial interpretation for these
integers. If f(x) is the g.f. for widgets and g(x) is the g.f. for doodles then f(x)g(x) is this
generating function for pairs consisting of a widget and a doodle (i.e. a widget-doodle).

Let me give you an example of something we can apply this principle to. Consider the
number of non-negative solutions to the equation x1 + x2 = n for n ≥ 0. If I write the
generating function for the number of such solutions I can compute it in two different ways
and get the same answer.

The first way is I will just look and notice that the non-negative solutions to the equation
x1 + x2 = n are (x1, x2) ∈ {(n, 0), (n − 1, 1), (n − 2, 2), . . . , (0, n)}. Therefore the number
of solutions to x1 + x2 = n is equal to n+ 1 and the generating function

∑
n≥0(n+ 1)xn =

1
(1−x)2 .

Now let me try to compute the same thing using the multiplication principle of generating
functions (MPofGFs). The a solution to x1 + x2 = n is isomorphic to a solution to a pair
(x1, x2) whose sum is n. By MPofGFs we have that

∑
n≥0

(#pairs (x1, x2) s.t. x1 + x2 = n)xn =

∑
n≥0

(#solutions to the equation x1 = n)xn

2

But the number of solutions to the equation x1 = n is equal to 1 for all n ≥ 0 so∑
n≥0

(#solutions to the equation x1 = n)xn =
1

1− x

and hence ∑
n≥0

(#pairs (x1, x2) s.t. x1 + x2 = n)xn =
1

(1− x)2
.
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I know it seems a kind of trivial example, but we have shown that the number of solutions
to x1 + x2 = n has generating function equal to 1/(1− x)2 in two different ways. Lets try
to expand this.

The generating function for the number of non-negative solutions to

x1 + x2 + x3 + x4 = n

is equal to the number of tuples (x1, x2, x3, x4) where x1 + x2 + x3 + x4 = n which is equal
to the number of pairs (X,Y ) where X is a pair (x1, x2) with x1 + x2 = i and Y is a pair
(x3, x4) with x3 + x4 = n− i. By the MPofGFs we know that∑
n≥0

(#pairs (X,Y ) s.t. X is a solution to x1 + x2 = i and Y is a solution to x3 + x4 = n− i)xn

=

∑
n≥0

(pairs (x1, x2) s.t. x1 + x2 = n)xn

2

=

(
1

(1− x)2

)2

=
1

(1− x)4
.

In general, we can apply the MPofGFs multiple times to show that∑
n≥0

#(number of solutions to x1 + x2 + · · ·+ xk = n)xn =
1

(1− x)k
.

The thing is that this is something that we have already discussed in this class

1

(1− x)k
=
∑
n≥0

(
n+ k − 1

k − 1

)
xn

so the number of solutions to x1 +x2 + · · ·+xk = n is equal to
(
n+k−1
k−1

)
. We had discussed

this before that the number of solutions is equal to the number of sequences of n dots •
and k − 1 bars |.

Here is an example of a problem that we can apply these ideas to: “How many ways are
there of making change for 78 using pennies, nickels, dimes, and quarters.” The answer is
equivalent to the number of tuples (p, n, d, q) such that p+ 5n+ 10d+ 25q = n. If we apply
MPofGFs, then this is the product of the generating functions for solutions to p = N ,
the solutions to 5n = N , the solutions to 10d = N , the solutions to 25q = N and these
sequences have respective generating functions 1

1−x , 1
1−x5 , 1

1−x10 and 1
1−x25 .

Therefore the generating function for the number of ways of making change for N cents
with pennies, nickels, dimes and quarters is

C(x) =
1

(1− x)(1− x5)(1− x10)(1− x25)
.

If in particular I wanted the number of ways of making change for 78 cents I would go
to the computer and ask:

sage: taylor(1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)),x,0,78).coefficient(x^78)

121

sage: taylor(1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)),x,0,10)
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4*x^10 + 2*x^9 + 2*x^8 + 2*x^7 + 2*x^6 + 2*x^5 + x^4 + x^3 + x^2 + x + 1

I also calculated here the ways of making change for N cents for 0 ≤ N ≤ 10 and I notice
that the number ways of making change for 10 cents is 4 = #{10 pennies; 1 nickel, 5
pennies; 2 nickels; one dime } and this agrees with the answer that the generating function
returns.

I then wanted to demonstrate that you can throw in some pretty crazy conditions on
your combinatorial problem and calculating the number of such solutions is still a matter
of breaking up the problem into pieces where you can either add or multiply generating
functions. As long as your combinatorial condition has a nice expression for the generating
function, then applying this tool works really well.

So, for instance say that in addition that you wanted to make change for N cents where
you also have an American quarter and two American nickels but as many Canadian
pennies, nickels, dimes and quarters as you want. You can break the combinatorial problem
into the number of tuples (X,Y, Z) where X is some way of taking change for I cents with
Canadian coins, Y is some way of taking change for J cents using the American quarter
or not, Z is some way of making change for K cents using the two American nickels. We
want to know how may ways there are of making change for N cents, so we will take the
coefficient of xN in the expression for the product of generating functions.

We already know that the generating function for the first part of the tuple is C(x) (given
above). With the American quarter we can make change either for 0 cents or 25 cents and
only in one way each so the generating function is 1 + x25. With the two American nickels
we can make change for 0, 5 or 10 cents only and there is exactly one way of doing that
(the nickels are indistinguishable), then the generating function is equal to 1 + x5 + x10.
Therefore the generating function for N cents where you also have an American quarter
and two American nickels but as many Canadian pennies, nickels, dimes and quarters as
you want is equal to

C(x)(1 + x25)(1 + x5 + x10) =
(1 + x25)(1 + x5 + x10)

(1− x)(1− x5)(1− x10)(1− x25)
.

We can compute the number of these by asking the computer:

sage: taylor((1+x^5+x^10)*(1+x^25)/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)),

x,0,78).coefficient(x^78)

430

We can also use generating function to derive combinatorial identites. Recall that last
time, I showed that the generating function for the Fibonacci numbers is 1/(1− x− x2) =
F (x) =

∑
n≥0 Fnx

n. Then we can rewrite this as

F (x) =
1

1− (x+ x2)
=
∑
n≥0

(x+ x2)n =
∑
n≥0

(1 + x)nxn
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We also know that (1+x)n is the generating function for the binomial coefficients (1+x)n =∑
k≥0

(
n
k

)
xk therefore

F (x) =
∑
n≥0

∑
k≥0

(
n

k

)
xn+k

If I take the coefficient of xm in both sides of this equation I find that

Fm =
∑

n+k=m

(
n

k

)
.

For example

F5 =

(
5

0

)
+

(
4

1

)
+

(
3

2

)
+

(
2

3

)
+

(
1

4

)
+

(
0

5

)
.

I know that
(
2
3

)
+
(
1
4

)
+
(
0
5

)
= 0 and

(
5
0

)
= 1,

(
4
1

)
= 4 and

(
3
2

)
= 3, therefore F5 = 1+4+3 = 8.

F6 =

(
6

0

)
+

(
5

1

)
+

(
4

2

)
+

(
3

3

)
= 1 + 5 + 6 + 1 = 13

and this agrees with our generating function

sage: taylor(1/(1-x-x^2),x,0,8)

34*x^8 + 21*x^7 + 13*x^6 + 8*x^5 + 5*x^4 + 3*x^3 + 2*x^2 + x + 1

We can also derive a second equation for the Fibonacci numbers. If you apply the

quadratic formula to 1− x−x2 = 0 you obtain that φ = 1+
√
5

2 and φ = 1−
√
5

2 are the roots

of the equation. Check explicitly that φφ = −1 and φ+ φ = 1, therefore

(1− φx)(1− φx) = 1− φx− φx+ φφx2 = 1− x− x2

Now if I have a rational function of the form 1
(1−φx)(1−φx) then there is this technique

that you probably learned in calculus that says that there exists A and B such that

F (x) =
1

(1− φx)(1− φx)
=

A

(1− φx)
+

B

(1− φx)
.

If we take the coefficient of xm in both sides of this equation we find that

Fm = Aφm +Bφ
m
.

If you solve for A and B by saying that since A(1 − φx) + B(1 − φx) = 1, then let

x = 1/φ to see that B = 1
1−φ/φ = φ

φ−φ = − φ√
5

and let x = 1/φ so then A = φ

φ−φ = φ√
5
. We

conclude

Fm =
φm+1

√
5
− φ

m+1

√
5

=
1√
5

(
1 +
√

5

2

)m+1

− 1√
5

(
1−
√

5

2

)m+1

.

which (at least to me) is kind of hard to believe until you do this by hand or test it out on
the computer.
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sage: expand( 1/sqrt(5)*(((1+sqrt(5))/2)^6-((1-sqrt(5))/2)^6))

8

sage: expand( 1/sqrt(5)*(((1+sqrt(5))/2)^7-((1-sqrt(5))/2)^7))

13

Exercises: I was asked about what would be questions at the level of a test question. You
should be able to answer

(a) during a timed exam,
(b) during a timed exam (this should be at a slightly harder level maybe you will need

a computer to get the numerical value)
(c) would be at the level of a homework problem or a take home exam
(d) should be considered a challenge and (while doable) may take a while to complete

On the following two questions find a generating function representing the sequence for a
all n. Take the coefficient of xn for the n specified in the problem

(1) How many ways are there making change for n = $1.00 with pennies, nickels, dimes
and quarters such that:
(a) there are an even number of nickels and no pennies ?
(b) such that there at most 6 nickels ?
(c) the total number of nickels and dimes is even ?
(d) the total number of pennies, dimes and quarters is even ?

(2) How many ways are there of placing n = 50 balls in 10 distinguished boxes such
that:
(a) there is no restriction ?
(b) there are at most 17 balls in the first box ?
(c) the first 4 boxes have at most 10 of the balls ?
(d) the first 4 boxes have at least half of the balls ?

(3) (a) Find the generating function for the sequence a0, 2a1, a2, 2a3, a4, 2a5, a6, 2a7, . . .
in terms of the generating function A(x) =

∑
n≥0 anx

n.

(b) Find the generating function for the sequence a1, a0, a3, a2, a5, a4, a7, a6, . . . in
terms of the generating function A(x) =

∑
n≥0 anx

n.

(c) On the homework assignment you were to arrive at an expresion for L(x) =∑
n≥0 Lnx

n = (1 + 2x)/(1 − x − x2). Using the formula for the product of
generating functions, what is the coefficient of xn in the generating function

1
1+2xL(x)? Conclude a formula relating the Fibonacci numbers and the Lucas

numbers because F (x) = 1
1+2xL(x).

(d) Given D0 = 1, D1 = a and Dn+1 = aDn + bDn−1 where a, b are unknowns.
The entry sequence Dn will be a polynomial in a and b. Find the coefficient
of arbs.
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Enumeration problems (this is not related to generating functions, it is a review of the
types of combinatorial problems that came up on the last homework): Make sure that you
explain your answer as completely as possible. It is not sufficient to give just a numerical
answer, you must give an explanation why your answer is correct.

(4) How many 5 card hands ...
(a) contain a three of a kind and a 3 values in a row ?
(b) contain a three of a kind sequence and 3 values in a row that are not all of the

same suit ?
(c) contain a three of a kind sequence and 3 values in a row that are not all of the

same suit but do not contain a Queen?
(d) contain a three of a kind sequence and 3 values in a row that are not all of the

same suit but do not contain a Queen or a black 10?
Note: the three of a kind and the three value sequence must overlap 4♥5♦5♣5♠6♣.


