
NOTES ON OCT 16, 2012

MIKE ZABROCKI

I started off by giving an example that was typical of the type of problem that I have
been giving in the homework and the midterm. I felt that at this point you should be
prepared to this type of problem:

How many non-negative integer solutions are there to the equation

x1 + x2 + x3 + x4 = n

with x1 + x2 divisible by 3?

The first step would be to find an equation for the generating function, although there
is a second answer (that I didn’t discuss in class) which also can be used to answer this
question. To find the generating function you would first break the problem into three
steps, find the number of solutions to x1 + x2 = k where x1 + x2 is divisible by 3, the
number of solutions to x3 = ` and the number of solutions to x4 = n − k − `. Since we
have broken down the problem into these three substeps, then we know that

g.f. for # of solutions to x1 + x2 + x3 + x4 = n with x1 + x2 divisible by 3 = (g.f. for #
of solutions to x1 + x2 = n with x1 + x2 divisible by 3) (g.f. for # of solutions to x3 = n
) (g.f. for # of solutions to x4 = n ). We know that for each n there is one solution to
x3 = n so the generating function for the number of such solutions is 1/(1− x) (similarly
for x4 = n). Now to find the generating function for x1 + x2 = n with x1 + x2 divisible
by 3, the obvious way is to take the generating function for the number of solutions to
x1 + x2 = n which we know is equal to A(x) = 1/(1 − x)2 and then pick out every third
term using the method that we discussed on October 2 (see notes) and give it was

1

3
(A(x) +A(ζ3x) +A(ζ23x))

Instead I will suggest another method to get at this generating function by computing a
table of coefficients and then writing a formula for the generating function.

n 0 1 2 3 4 5 6 7 8 9
# of solutions 1 0 0 4 0 0 7 0 0 10

In other words if n is divisible by 3, then the number of solutions is n+ 1, otherwise it is
0. This means that the generating function is∑

n≥0
(3n+ 1)x3n = 3

∑
n≥0

nx3n +
∑
n≥0

x3n = 3
x3

(1− x3)2
+

1

1− x3
.
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Note that the last equality comes from the tables of generating functions that we have
developed. From this we conclude that

g.f. for # of solutions to x1 + x2 + x3 + x4 = n with x1 + x2 divisible by 3 =(
3

x3

(1− x3)2
+

1

1− x3

)
1

(1− x)2
.

There is another way of coming up with an answer to this question. If we want to find
the number of solutions to x1 + x2 + x3 + x4 = n with x1 + x2 divisible by 3 then we don’t
need to go so far as to apply generating functions. This is equal to the number of solutions
to x1 +x2 = k and x3 +x4 = n−k with x1 +x2 divisible by 3. For each k there are (k+ 1)
solutions to x1 + x2 = k and there are n − k + 1 solutions to x3 + x4 = n − k. Therefore
the number of solutions

∑
3 divides k

(k + 1)(n− k + 1) =

bn/3c∑
r=0

(3r + 1)(n− 3r + 1).

What I hoped to show from this example is that ordinary generating functions are a
very powerful tool for enumerating certain types of sets. Usually these are sets that can be
reduced to something that is very similar to the example we just looked at. We can apply
the multiplication principle of generating functions if we can divide the enumeration of a
set with cn elements into a widget of size k and a doodle of size n − k, then if ak is the
number of widgets of size k and bn−k is the number of doodles of size n− k, then

(1) cn =
n∑

k=0

akbn−k .

The problem is that there are many other enumeration questions where we don’t have
this sort of decomposition. One of those examples are the Bell numbers: B0 = 1, B1 = 1
and Bn+1 =

∑n
k=0

(
n
k

)
Bk for n > 1 which is equal to the number of set partitions of n+ 1.

We can calculate the next few values as B2 = 2, B3 = 5, B4 = 15, B5 = 52.
The problem is that the expression

∑n
k=0

(
n
k

)
Bk is not of the form

∑n
k=0 akbn−k . Why?

If I set B(x) =
∑

n≥0Bnx
n, then when I multiply B(x)A(x)|xn is

∑n
k=0 an−kBk and I can’t

find a generating function where an−k =
(
n
k

)
. It just doesn’t seem to work.

There is a way around this. We can define a new type of generating function A(x) =∑
n≥0 an

xn

n! and if we take a second to B(x) =
∑

n≥0 bn
xn

n! and multiply these together then
we see that

A(x)B(x) =
∑
n≥0

ak
k!

bn−k
(n− k)!

xn =
∑
n≥0

n!

k!(n− k)!
akbn−k

xn

n!
=
∑
n≥0

(
n

k

)
akbn−k

xn

n!

.
This gives us a new principle to work with.
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Principle 1. The coefficient of xn/n! in the product of A(x) =
∑

n≥0 an
xn

n! and B(x) =∑
n≥0 bn

xn

n! is equal to

(2)
n∑

k=0

(
n

k

)
akbn−k.

I mention this because in the recurrence for Bn+1 if we set ak = Bk and bn−k = 1 then it
is of this form. Therefore it seems as though we might be able to write down a generating
function of this form. We call A(x) =

∑
n≥0 an

xn

n! the exponential generating function for a
sequence. Consider the exponential generating function for the sequence 1, 1, 1, 1, 1, 1, . . .,∑

n≥0
1
xn

n!
=
∑
n≥0

xn

n!
= ex .

The exponential generating function for the sequence 0, 1, 2, 3, 4, 5, 6, . . ., is equal to∑
n≥0

n
xn

n!
=
∑
n≥1

xn

(n− 1)!
= xex .

Now consider the sequence
(
0
k

)
,
(
1
k

)
,
(
2
k

)
,
(
3
k

)
,
(
4
k

)
,
(
5
k

)
, . . ., where k is fixed. We calculate that

the exponential generating function is equal to∑
n≥0

(
n

k

)
xn

n!
=
∑
n≥k

n!

k!(n− k)!

xn

n!
=
∑
n≥k

1

k!

xn

(n− k)!
=
xk

k!

∑
n≥k

xn−k

(n− k)!
=
xk

k!
ex .

Now lets apply what we know to finding a formula for the exponential generating function
for B(x) =

∑
n≥0Bn

xn

n! where B0 = B1 = 1 and Bn+1 =
∑n

k=0

(
n
k

)
Bk. Lets work it out as

we normally do except with exponential generating functions.

B(x) =
∑
n≥0

Bn
xn

n!

= 1 +
∑
n≥1

Bn
xn

n!

= 1 +
∑
n≥1

n−1∑
k=0

(
n− 1

k

)
Bk

xn

n!

= 1 +B0
x

1!
+

((
1

0

)
B0 +

(
1

1

)
B1

)
x2

2!
+

((
2

0

)
B0 +

(
2

1

)
B1 +

(
2

2

)
B2

)
x3

3!
+ · · ·

Now those coefficients that are appearing in this sum should look very familiar. They
are exactly those that appear in equation (2) except that ak = Bk and bn−k = 1. Therefore
if we calculate B(x)ex we see

B(x)ex = B0 +

((
1

0

)
B0 +

(
1

1

)
B1

)
x1

1!
+

((
2

0

)
B0 +

(
2

1

)
B1 +

(
2

2

)
B2

)
x2

2!
+ · · ·
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We can make the expression for B(x)ex look exactly like the expression that comes after
the 1+ in the expression for B(x) by integrating one time. What this means is that

B(x) = 1 +

∫
B(x)exdx

or also

B′(x) = B(x)ex

It is not trivial to solve for B(x), but it is possible and if I give you the solution, it is not
hard to verify that B(x) = ee

x−1. In fact if I use “sage” to compute the Taylor expansion
of ee

x−1, then I see that

sage: taylor(exp(exp(x)-1), x, 0, 6)

203/720*x^6 + 13/30*x^5 + 5/8*x^4 + 5/6*x^3 + x^2 + x + 1

If I rewrite this with the n! in the dominators (no simplification of the fractions) then I
see that

ee
x−1 = 1 +

x

1!
+ 2

x2

2!
+ 5

x3

3!
+ 15

x4

4!
+ 52

x5

5!
+ 203

x6

6!
+ · · ·

and this agrees with what we calculated earlier with B0 through B5.
I can also use sage to help me with the algebra of verifying that B′(x) = d

dx(ee
x−1) =

ee
x−1ex = B(x)ex.

sage: diff(exp(exp(x)-1),x)

e^(x + e^x - 1)

sage: exp(x)*exp(exp(x)-1)

e^(x + e^x - 1)

I will continue to expand on the use of exponential generating functions. What we
will need to do is develop tools for creating libraries of generating functions as we did
for ordinary generating functions. For instance, if I give you the exponential generating
function A(x) =

∑
n≥0 an

xn

n! , then I expect you to be able to give me expressions for∑
n≥0 an+2

xn

n! ,
∑

n≥0 nan
xn

n! ,
∑

n≥0 an
xn+2

(n+2)! .

I would also like to apply our generating function techniques to objects called partitions
because they are very much the type of combinatorial object where equation (1) applies,
just as the recursion for the number of set partitions Bn was able to use (2).

Recall that a partition of n is a sum λ1 +λ2 + · · ·+λr = n. The order of the sum doesn’t
matter so to avoid confusion we assume that λ1 ≥ λ2 ≥ · · · ≥ λr. The λi are called the
parts of the partition. r here is the number of parts of the partition or the length of the
partition. The sizes of the parts are the values λi. The size of the partition is the sum of
the sizes of all the parts (in this case n). Parts are called distinct if they are not equal to
each other. The number of parts of a given size refers to the number of times that a value
appears as a part.

A partition is represented by a diagram where I put rows of boxes and in the ith row
from the the bottom I put λi boxes and these rows of boxes are left justified. For instance
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the partition (5, 3, 3, 2, 1, 1, 1) is represented as

The picture is a convenient way of picturing what a partition is as a combinatorial object.
Here are some examples:

Partitions of 3

, (1, 1, 1) , (2, 1) , (3)

Partitions of 4

, (1, 1, 1, 1) , (2, 1, 1) , (2, 2) (3, 1) , (4)

Lets first consider the generating function for partitions using parts of size k only. De-
fine P=k(x) =

∑
n≥0(number of partitions of n with parts of size equal to k)xn. The only

partitions of this type are the empty partition (), (k), (k, k), (k, k, k), . . .. There is exactly
one partition of n with parts of size k iff k divides n. Therefore the generating function is
simply

P=k(x) = 1 + xk + x2k + x3k + · · · = 1

1− xk
.


