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This topic is covered in more detail (but perhaps more tersely) in [2, 3] and some of the
ideas, definitions and presentation are taken from there. I also borrowed a number of ideas
from [4].

In these notes what I plan to do is

• introduce Mobius inversion for integer sequences an and bn related by an =
∑

d|n bd
• Use this to give a formula for the Euler phi function
• Introduce posets
• Define Mobius inversion for posets
• Use that to introduce/prove inclusion-exclusion

We recently came across another example of a system of equations that is similar, but
not the same. Consider

(1) n =
∑
d|n

φ(d).

using the notation d|n to represent the shorthand “d divides n” (that is, there exists an
integer k such that dk = n). We gave a proof of this equation by looking at rotations of
beads on a necklace and calculating the group of symmetries of rotations of those beads.

If σ = (123 · · ·n), then {σ1, σ2, . . . , σn} is the group of rotations on an n element set.
We showed that the permutations σi such that gcd(i, n) = d have exactly d cycles (each
of length n/d). The number of permutations σi such that gcd(i, n) = d is equal to φ(n/d).
Since there are n permutations in the group, then

∑
d|n φ(n/d) =

∑
d|n φ(d) = n. (Note:

This expression came up in context of applying Polya’s theorem to count the number of
necklaces and we concluded that the number of unique necklaces with n beads that have
k different colors where you can rotate the necklace is equal to 1

n

∑
d|n φ(n/d)kd .

One way to give a formula for the Euler phi function is to use the principle of inclusion-
exclusion to show that

φ(pa11 p
a2
2 · · · pakk ) = pa11 p

a2
2 · · · pakk (1− 1/p1)(1− 1/p2) · · · (1− 1/pk) .

In these notes I am going to skip that proof (because in class I only did it directly for
φ(paqb) = paqb − pa−1qb − paqb−1 + pa−1qb−1 and I said that the more general case is
similar). We will come up with a different type of formula for the Euler phi function using
a “different” technique (actually it is the same, it is just in disguise it looks different).

I mentioned that we can use this system of equations (equation (1)) to solve for the
values of φ(d).

1



2 MIKE ZABROCKI - NOVEMBER/DECEMBER 2017

1 = φ(1) φ(1) = 1
2 = φ(1) + φ(2) φ(2) = 2− φ(1) = 2− 1 = 1
3 = φ(1) + φ(3) φ(3) = 3− φ(1) = 3− 1 = 2
4 = φ(1) + φ(2) + φ(4) φ(4) = 2− φ(2)− φ(1) = 4− 1− 1 = 2
5 = φ(1) + φ(5) φ(5) = 5− φ(1) = 5− 1 = 4
6 = φ(1) + φ(2) + φ(3) + φ(6) φ(6) = 6− φ(3)− φ(2)− φ(1) = 6− 2− 1− 1 = 2
7 = φ(1) + φ(7) φ(7) = 7− φ(1) = 7− 1 = 6
8 = φ(1) + φ(2) + φ(4) + φ(8) φ(8) = 8− φ(4)− φ(2)− φ(1) = 8− 2− 1− 1 = 4
9 = φ(1) + φ(3) + φ(9) φ(9) = 9− φ(3)− φ(1) = 9− 2− 1 = 6

If we set up a system of equations of the form

(2) an =
∑
d|n

bd,

then we can solve for bn in terms of an.

a1 = b1 b1 = a1
a2 = b1 + b2 b2 = a2 − b1 = a2 − a2
a3 = b1 + b3 b3 = a3 − b1 = a3 − a1
a4 = b1 + b2 + b4 b4 = a4 − b2 − b1 = a4 − a2
a5 = b1 + b5 b5 = a5 − b1 = a5 − a1
a6 = b1 + b2 + b3 + b6 b6 = a6 − b3 − b2 − b1 = a6 − a3 − a2 + a1
a7 = b1 + b7 b7 = a7 − b1 = a7 − a1
a8 = b1 + b2 + b4 + b8 b8 = a8 − b4 − b2 − b1 = a8 − a4
a9 = b1 + b3 + b9 b9 = a9 − b3 − b1 = a9 − a3

The right hand side of the equation looks a bit hard to guess at (for instance, why is
b9 = a9 − a3 while b6 = a6 − a3 − a2 + a1?), but there is an explicit formula for this
expression. In this case

(3) bn =
∑
d|n

µ(d)an/d =
∑
d|n

µ(n/d)ad

where

Definition 1.

µ(n) =

{
(−1)k if n is a product of k distinct primes

0 if there is a prime p such that p2 divides d
.

In particular, since equation (1) has exactly the form (2) (with an = n and bd = φ(d)),
then equation (3) says that

(4) φ(n) =
∑
d|n

µ(d)
n

d
=
∑
d|n

µ(n/d)d .

Start with a lemma, namely:
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Lemma 2. For n ≥ 1, ∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise

Proof. First we note that the sum over d|n of µ(d) is really the sum over the square free
divisors of n (because the ones that are not square free have µ(d) = 0). Then assume that
n = pa11 p

a2
2 · · · pakk where k > 0. Every divisor will be a product of some subset of the pi.

Therefore assuming n > 1 then k > 0 and

∑
d|n

µ(d) =
∑

S⊆{1,2,...,k}

µ

(∏
i∈S

pi

)
=

k∑
r=0

∑
S⊆{1,2,...,k}:|S|=r

µ

(∏
i∈S

pi

)

=
k∑

r=0

(−1)r
(
k
r

)
= (1− 1)k = 0 .

�

From this property it follows that an =
∑

d|n bd implies equation (3).

Lemma 3. If an =
∑

d|n bd, then bn =
∑

d|n µ(n/d)ad.

Proof.∑
d|n

µ(n/d)ad =
∑
d|n

∑
c|d

bcµ(n/d) =
∑
c|n

∑
c|d and d|n

µ(n/d)bc =
∑
c|n

∑
d′|(n/c)

µ((n/c)/d′)bc

By Lemma 2, the inner sum
∑

d′|(n/c) µ((n/c)/d′) is equal to 1 if n/c = 1 and 0 otherwise,

hence the right hand side is bn. �

The proof of the converse of Lemma 3 is similar. I will prove both directions more
generally in the notes below (combine Theorem 13 and Example 15 and this shows Lemma
3 and its converse).

When we started the class we talked about telescoping sums and I gave several exercises
where an =

∑n
i=1 bi and I said that we could prove this if we show bn = an − an−1, then it

follows that
∑n

i=1 bi =
∑n

i=2(ai − ai−1) + a1 =
∑n

i=1 ai −
∑n

i=2 ai−1 = an.
I want to organize three seemingly different systems of equations that and develop a

technique in order to solve them:

an =
∑n

i=1 bi if and only if bn = an − an−1
an =

∑
d|n bd if and only if bn =

∑
d|n µ(n/d)ad

aS =
∑

T⊂S bT if and only if bS =
∑

T⊂S(−1)|S|−|T |aT

The first of these is telescoping sums, the second is Möbius inversion, third one we haven’t
used yet in any obvious manner, but it is equivalent to inclusion-exclusion. I will next
discuss a setup where there are many formulae that fit this pattern.
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1. Partially ordered sets

A partially ordered set (poset for short) is a (countable or finite) set of objects, S,
together with a binary relation ≤ satisfying

(1) x ≤ x for x ∈ S,
(2) if x ≤ y and y ≤ x, then x = y,
(3) if x ≤ y and y ≤ z, then x ≤ z.

Note: this definition is kind of modeled on
A binary relation that satisfies (1) is called a reflexive relation. A binary relation that

satisfies condition (3) is called transitive. If you have seen these definitions before it would
have been likely that they would have come up in a discussion about ‘equivalence relations’
and every equivalence relation satisfies (1), (3) and a third relation that says if x is related
to y, then y is related to x. A partial order satisfies a weaker condition so every equivalence
relation is a partial order, but not every partial order is an equivalence relation.

A partial order is sort of a generalization of the notion of ≤ on the set of numbers.
For each poset there is a diagram, called a Hasse diagram, which encodes the information

in the order and the set in a picture. The Hasse diagram for a poset P = (S,≤) has a
point for each element x in S. If x ≤ y in the poset then x is placed lower in the diagram.
If x ≤ y and there does not exists a z such that x ≤ z ≤ y then a line is drawn between the
two points representing x and y. If x and y are not comparable in the poset, then no edge
is placed between x and y and there should be no upward path between x and y either.

Example 4. For example

is the Hasse diagram for a poset with three elements in the set and a ≤ c and b ≤ c while
a and b are not comparable while a, b and c are all less than or equal to d.

While that example explains a small example of a finite poset, below are four examples
which provide us with infinite examples of posets.

Example 5. Consider the poset ({1, 2, . . . , n},≤) where a ≤ b if b − a is a non-negative
integer. This is the normal order on integers and the poset looks like a chain.

In this case, every pair of integers satisfies either x ≤ y or y ≤ x (or both if x = y). This
is not typical of a poset and this is where the “partial” from phrase “partially ordered set”
comes from. Typically a poset will have some elements x, y such that x � y and y � x,
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that is, there are pairs of elements which are not comparable. A poset where every pair of
elements x, y has either x ≤ y or y ≤ x is referred to as a total order.

Example 6. The poset of integers ({1, 2, 3, . . .),≤|) where the notation a ≤| b if a divides
b. This is an infinite poset and so the Hasse diagram can only represent a portion of it.
I had drawn this one in class and it has 1 as a minimal element (because 1 divides every
integer). Then on a level above 1 there are all the primes with a line from 1 to each of
those primes. On level k of this poset there are all the integers which are a product of k
primes.

1

2 3 5 7 11 13

4 6 9 10

8

14 15

12 18 20

16 24

17

21 22

23

25 26

27 28 30

29

Graph of the integers 1-30 partially ordered by division

19

Example 7. Consider the set Bn = {S : S ⊆ {1, 2, 3, . . . , n}} and the order S is less than
or equal to T if S ⊆ T . This is known as the Boolean poset. For every n, Bn has 2n

elements. The Boolean poset for n = 4 is shown below.
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{2, 3}

{1}

{}

{1, 3, 4}{1, 2, 4}

{3, 4}{2, 4}

{2, 3, 4}

{3}

{1, 2, 3, 4}

{1, 2} {1, 3}

{1, 2, 3}

{1, 4}

{4} {2}

The picture above was created in Sage with the command view(Poset((Subsets(4),lambda

S,T: S.issubset(T)))) .

Example 8. Any set S with the relation x = x is an equivalence relation and partial order
(S,=). The Hasse diagram looks like a sequence of points all at the same level and none
of them are connected.

Example 9. The set partitions {1, 2, . . . , n} are the set of sets {S1, S2, . . . , Sr} where each
Si ⊆ {1, 2, . . . , n} such that S1 ∪ S2 ∪ · · · ∪ Sr = {1, 2, . . . , n} and all of the Si are are all
disjoint. We say that {S1, S2, . . . , Sr} ≤ {T1, T2, . . . , Td} if for each 1 ≤ i ≤ r, Si ⊆ Tj for
some 1 ≤ j ≤ d. An example of the Hasse diagram for this poset for n = 4 is shown below.

{{1, 4}, {2}, {3}}{{1}, {2, 3}, {4}} {{1}, {2, 4}, {3}}

{{1, 2, 4}, {3}}

{{1, 2, 3, 4}}

{{1, 2, 3}, {4}}{{1, 2}, {3, 4}}

{{1, 2}, {3}, {4}}

{{1, 4}, {2, 3}}{{1}, {2, 3, 4}} {{1, 3, 4}, {2}}

{{1}, {2}, {3, 4}} {{1, 3}, {2}, {4}}

{{1, 3}, {2, 4}}

{{1}, {2}, {3}, {4}}

The image above was created with Sage using the command view(Poset((SetPartitions(4),

lambda A,B: A in B.refinements()))) .

2. The Möbius function of a poset

For any poset and any pair of elements x, y in the poset, define µ(x, y) = 0 if x � y,
µ(x, x) = 1 and if x ≤ y, then

∑
x≤z≤y µ(x, z) = 0. Equivalently, µ(x, y) = −∑x≤z<y µ(x, z).
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In summary,

(5) µ(x, y) =


0 if x � y

1 if x = y

−∑x≤z<y µ(x, z) if x < y

.

We need only compute this Möbius function on all intervals x ≤ y. In order to compute
the value of the function µ(x, y) we set the value µ(x, x) and then for each y in the poset,
we let µ(x, y) be the value so that the sum of all the values µ(x, z) where x ≤ z ≤ y sum
to 0.

Example 10. Below we compute the Möbius value of the poset for the three non-trivial
intervals of the small example with 4 vertices above.

Example 11. The Möbius function for the poset of set partitions of 4 of the form
µ({{1}, {2}, {3}, {4}}, π) where π is a set partition of 4.

The reason for this definition of the M”obius function is that it is a combinatorial means
to do linear algebra. If we have a system of linear equations indexed by the elements of a
poset such as ax =

∑
y≤x by, then these unknowns are related by bx =

∑
y≤x µ(y, x)ay. We

saw this relationship between equation (2) and (3). In this case the Möbius function for
the poset of integers ordered by division is µ(d, n) = µ(n/d) where on the left hand side
of the equation µ(d, n) is given by equation (5) and on the right hand side µ(n/d) is given
by Definition 1.

Define a function on pairs x, y in the poset by

(6) ζ(x, y) =

{
1 if x ≤ y
0 if x � y
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It follows that we can express any sum like

(7) ax =
∑
y≤x

by =
∑
y

ζ(y, x)by

in terms of the coefficients of the function ζ(y, x)
Let P be a finite poset with n elements. First order our elements in the poset with a

total order {x1, x2, . . . , xn} so that the smaller elements come first, then we can define a
matrix

Z = [ζ(x, y)]x,y∈P =


ζ(x1, x1) ζ(x1, x2) · · · ζ(x1, xn)
ζ(x2, x1) ζ(x2, x2) · · · ζ(x2, xn)

...
...

. . .
...

ζ(xn, x1) ζ(xn, x2) · · · ζ(xn, xn)

 .

This matrix allows us to express the set of equations in (7) in matrix notation
(8)

(
ax1 ax2 · · · axn

)
=
(
bx1 bx2 · · · bxn

)

ζ(x1, x1) ζ(x1, x2) · · · ζ(x1, xn)
ζ(x2, x1) ζ(x2, x2) · · · ζ(x2, xn)

...
...

. . .
...

ζ(xn, x1) ζ(xn, x2) · · · ζ(xn, xn)

 .

Notice that if we list the elements in order where the smallest elements are first then
µ(xj , xi) = 0 if j > i and so the matrix Z will be upper triangular (actually the fact
that you can do this is a consequence of property (2) and (3) of the definition of a poset).
Moreover since µ(xi, xi) = 1 for all 1 ≤ i ≤ n we have that Z is upper unitriangular.
Therefore Z = In×n + N where In×n is the n × n identity matrix and N is a nilpotent
matrix (a matrix such that Nn is the zero matrix). Note that the reason that N is a
nilpotent matrix is that it has 0’s on and below the main diagonal so N r will have 0’s on
the first r diagonals and Nn will have nothing but 0 entries.

As a consequence, we have that

Z−1 = I −N +N2 − · · ·+ (−1)n−1Nn−1

since

(I +N)(I −N +N2 − · · ·+ (−1)n−1Nn−1) = I −N +N2 − · · ·+ (−1)n−1Nn−1

+N −N2 +N3 − · · ·+ (−1)n−1Nn = I .

If we define

M =


µ(x1, x1) µ(x1, x2) · · · µ(x1, xn)
µ(x2, x1) µ(x2, x2) · · · µ(x2, xn)

...
...

. . .
...

µ(xn, x1) µ(xn, x2) · · · µ(xn, xn)


then M is also upper unitriangular since µ(xj , xi) = 0 if j > i and µ(xi, xi) = 1.
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Recall that if we have two matrices A and B which are indexed by the elements of the
poset then the (xi, xj) entry of AB =

∑
y Axi,yBy,xj . Hence if we take the (xi, xj) entry of

MZ, then this is equal to∑
y

µ(xi, y)ζ(y, xj) =
∑
y≤xj

µ(xi, y) =
∑

xi≤y≤xj

µ(xi, y)

which is equal to 1 if xi = xj and it is equal to 0 otherwise. In other words, MZ = I and
M = Z−1 and for any x, z in the poset,

(9)
∑

z≤y≤x
µ(z, y) =

{
1 if z = x

0 if z 6= x

Since M is the left inverse of Z then it is also it’s right inverse so the (xi, xj) entry of
ZM is

(10)
∑
y

ζ(xi, y)µ(y, xj) =
∑

xi≤y≤xj

µ(y, xj) =

{
1 if xi = xj

0 if xi 6= xj

where the second equality happens because ZM = I. Hence we also have for x, z in the
poset,

(11)
∑

z≤y≤x
µ(y, x) =

{
1 if z = x

0 if z 6= x
.

Example 12. Lets do a simple example to make sure it is clear what is happening in each
of these formula. Consider the running example from Examples 4 and Example 10. We
will label the rows and columns of the matrices Z and M by the poset entries {a, b, c, d}
in that order. Then we have

(12) Z =


1 0 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 M =


1 0 −1 0
0 1 −1 0
0 0 1 −1
0 0 0 1 .


You can quickly check that Z and M are inverses of each other and Z can be computed
from the picture in Example 4 and M can be computed from the three pictures in Example
10. Moreover if we let

(13) N =


0 0 1 1
0 0 1 1
0 0 0 1
0 0 0 0


(since N = Z − I), then you can also check that M = I −N +N2 −N3.

We can use this formula to prove that the Möbius function is there to help us do linear
algebra. It gives us a relatively explicit formula for inverting a system of equations like
ax =

∑
y≤x by.
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Theorem 13. Let P be a finite poset with relation ≤, then

ax =
∑
y≤x

by iff bx =
∑
y≤x

µ(y, x)ay

and

ax =
∑
y≥x

by iff bx =
∑
y≥x

µ(x, y)ay .

Proof. Assume that ax =
∑

y≤x by for all elements x ∈ P (or as we will use this equation,

ay =
∑

z≤y bz), then∑
y≤x

µ(y, x)ay =
∑
y≤x

∑
z≤y

µ(y, x)bz =
∑
z≤x

∑
z≤y≤x

µ(y, x)bz = bx

where the last equality follows from equation (9). The second equality holds by interchang-
ing the order of the sum. I did this in a video

https://www.youtube.com/watch?v=5stHeMbYghY

Now to prove the “only if” part of the first statement, assume that by =
∑

z≤y µ(z, y)az,
then ∑

y≤x
by =

∑
y≤x

∑
z≤y

µ(z, y)az =
∑
z≤x

=
∑

z≤y≤x
µ(z, y)az = ax

where the last equality follows from equation (10).
These two calculations show the first “if and only if”, the second statement in the

theorem has an almost identical proof which I leave to the reader as an exercise. �

Example 14. The poset of positive integers ordered by the order in Example 5 has a
Möbius function

(14) µ(i, j) =


1 if j = i

−1 if j = i+ 1

0 otherwise

This follows because we can easily check that
∑

a≤b≤c µ(a, b) = 0 if a 6= c.
Theorem 13 says in the case of the positive integers that if

an = b1 + b2 + · · ·+ bn

for all n ≥ 1, then

bn = an − an−1 .
This is called the method of telescoping sums (I had created a youtube video on the subject
at https://www.youtube.com/watch?v=H6MmDRtuiNw).

Example 15. Lets come back to the poset in Example 6. The poset of positive integers
order by division is where this topic began because we had a system of linear equations
where an =

∑
d|n bd (see equation (2)) and I showed that there was a formula for bn in terms
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of the an, namely, bn =
∑

d|n µ(n/d)ad where the Möbius function is defined in Definition
1.

Warning: I am using the symbol µ in two different ways here. One is µ(n), with one
argument, and this is the function which is defined in Definition 1. The other is µ(a, d),
with two arguments, and this is the Möbius function of the poset of integers ordered by
division which is defined by equation (5). These functions are related by µ(a, d) = µ(d/a)
if a divides d and µ(a, d) = 0 otherwise. We will use Lemma 2 and the matrix notation
that we built up previously to show why.

We will work with a finite poset and consider only those in the set {1, 2, . . . , n}. The
Möbius function that is defined by equation (5) (as the function defined by the

∑
a|d and d|n µ(a, d) =

0 if a 6= n) are the entries µ(a, d) in the n× n matrix M which is the inverse of the matrix
Z. By defining a matrix

M ′ =

[{
µ(d/a) if a|d
0 otherwise

]
1≤a,d≤n

we can then apply Lemma 2 to show that M ′ is also the inverse of Z. Therefore we conclude
that M = M ′ and

µ(a, d) =

{
µ(d/a) if a|d
0 otherwise

.

Example 16. The poset of subsets of {1, 2, . . . , n} that we introduced in Example 7 is
called the Boolean poset. The Möbius function for this poset is

(15) µ(S, T ) =

{
(−1)|T |−|S| if S ⊆ T
0 otherwise

.

As an exercise, I asked you to prove the very Lemma that you need to to show that
µ(S, T ) has this formula, namely,

Lemma 17. For fixed subsets U and T ,∑
U⊆S⊆T

(−1)|T |−|S| =

{
1 if U = T

0 otherwise

As in our previous example, this Lemma would show that the matrix whose rows and
columns are indexed by the subsets of {1, 2, . . . , n} and whose entries are (−1)|T |−|S| if
S ⊆ T and 0 otherwise is the inverse of the matrix Z whose entries are 1 if S ⊆ T and 0
otherwise. This proves that (15) is the Möbius function for this poset.

3. Inclusion-Exclusion

I think a typical topic that we would include in a combinatorics class is that of inclusion-
exclusion but I don’t always cover it because I think of it is a specialized technique with
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limited applications. The addition principle that we started this class with says that if
there are disjoint sets A1, A2, . . . , Ak, then

|A1 ∪A2 ∪ · · · ∪Ak| = |A1|+ |A2|+ · · ·+ |Ak| .
The formula for inclusion-exclusion says how to calculate |A1 ∪ A2 ∪ · · · ∪ Ak| in the case
when the sets Ai are not disjoint. It says

(16) |A1 ∪A2 ∪ · · · ∪Ak| =
∑

∅⊂I⊆{1,2,...k}

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
or in less terse notation

|A1 ∪A2 ∪ · · · ∪Ak| = |A1|+ |A2|+ · · ·+ |Ak| − |A1 ∩A2| − |A1 ∩A3| − · · · − |Ak−1 ∩Ak|
+ |A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|+ · · ·+ |Ak−2 ∩Ak−1 ∩Ak| − · · ·
+ (−1)k−1|A1 ∩A2 ∩ · · · ∩Ak| .

The reason it is a useful formula is that it can be used to count the number of elements in a
union of sets when we can’t easily separate them into disjoint pieces but we can enumerate
the intersections. A simple example is counting the number of hands of cards where at least
one of the suits is not included (see Example 20 below). If you try to count this set there
are two ways of going about it: addition principle and inclusion-exclusion. The reference
[4] also develops Inclusion-Exclusion using Möbius inversion and the development here is
very similar to that presentation.

Although there are many ways to prove the inclusion-exclusion formula, we will use
Möbius inversion. Typically it is proved using a sign reversing involution, induction or
other method. For example, the book [2] presents several different proofs of Inclusion-
Exclusion and presents Möbius inversion in the section on “Inclusion-Exclusion and Related
Techniques.”

Theorem 18. (Inclusion-Exclusion formula) Let S be a finite set and A1, A2, . . . , Ak be
subsets of S, then

(17) |S| − |A1 ∪A2 ∪ · · · ∪Ak| =
∑

J⊆{1,2,...k}

(−1)|J |

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣
The sum on the right hand side of this equation is over subsets J of {1, 2, . . . , k} and,

in particular, when J is the empty the term
⋂

j∈J Aj = S. Note that equation (16) is

equivalent to this statement by isolating |A1 ∪A2 ∪ · · · ∪Ak| on one side of the equation.
The notation is quite terse, so it is worth trying the formula for the first few values of

k. In the case that k = 1 and it says |S| − |A1| = |S| − |A1| which is not very interesting.
For k = 2 the expression is

|S| − |A1 ∪A2| = |S| − |A1| − |A2|+ |A1 ∩A2|
and for k = 3, it says

|S|−|A1∪A2∪A3| = |S|−|A1|−|A2|−|A3|+|A1∩A2|+|A1∩A3|+|A2∩A3|−|A1∩A2∩A3| .
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Proof. For a subset I ⊆ {1, 2, . . . , k}, let

aI =

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
and

bI =

∣∣∣∣∣∣
⋂
i∈I

Ai −
⋃
J⊃I

⋂
j∈J

Aj

∣∣∣∣∣∣ .
Lemma 19 (below) says that

aI =
∑

I⊆J⊆{1,2,...,k}

bJ

and Theorem 13 says that

bI =
∑

I⊆J⊆{1,2,...,k}

µ(I, J)aJ .

In particular b∅ = |S| − |A1 ∪ A2 ∪ · · · ∪ Ak| because the empty intersection is S and⋃
J⊃∅

⋂
j∈J Aj = A1 ∪ A2 ∪ · · · ∪ Ak and by Example 16, µ(∅, J)aJ = (−1)|J |

∣∣∣⋂j∈J Aj

∣∣∣ so

equation (17) holds. �

That was a terse proof because all of the work was done by Möbius inversion and in
the setup of the sets representing the aI and bI (and all of that work is in Lemma 19).
It might be a little disorienting that the final expression for inclusion-exclusion is just b∅
and we didn’t need all of the other bI (but then that means the expression for bI is a more
general result than just inclusion-exclusion alone).

What is probably not clear is the use of bI as the cardinality of the sets
⋂

i∈I Ai −⋃
J⊃I

⋂
j∈J Aj . It is worth showing how the general formulas work with k = 2 using Venn

diagrams in order to see how this is Möbius inversion in disguise.
By the definitions of the aI and bI , we have
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a∅ = |S| b∅ = |S −A1 ∪A2 ∪ (A1 ∩A2)|

a{1} = |A1| b{1} = |A1 −A1 ∩A2|

a{2} = |A2| b{2} = |A2 −A1 ∩A2|

a{1,2} = |A1 ∩A2| b{1,2} = |A1 ∩A2|
From the pictures it is not hard to see a detail in the proof that I left as a Lemma. You

can easily see in the pictures (and this is just an example), that

a∅ = b∅ + b{1} + b{2} + b{1,2}

a{1} = b{1} + b{1,2}

a{2} = b{2} + b{1,2}

a{1,2} = b{1,2}

The next lemma explains why the aI are a sum of bJ over J subsets of {1, 2, . . . , k} which
contain I.

Lemma 19. For subsets A1, A2, . . . , Ak of S and for I ⊆ {1, 2, . . . , k}, if aI =
∣∣⋂

i∈I Ai

∣∣
and bI =

∣∣∣⋂i∈I Ai −
⋃

J⊃I
⋂

j∈J Aj

∣∣∣, then

aI =
∑

I⊆J⊆{1,2,...,k}

bJ .

Proof. In English, the description of bI are the elements x which are in the intersections of
Ai for i is in I such that x is not in any of the other Aj where j is not in I.

Let

BI =
⋂
i∈I

Ai −
⋃
J⊃I

⋂
j∈J

Aj ,

then bI = |BI |. I will show that ∩i∈IAi =
⋃

I⊆J⊆{1,2,...,k}BJ and the subsets BJ are all

disjoint.
Take an element x in ∩i∈IAi, then x is in the intersection of some set of Aj for j ∈ J

where I ⊆ J ⊆ {1, 2, . . . , k}. Let J be the largest set of indices with this property then
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x ∈ ⋂j∈J Aj and x /∈ ⋃K⊃J
⋂

j∈K Aj . This implies that x ∈ BJ and (since x was arbitrary),

∩i∈IAi ⊆
⋃

I⊆J⊆{1,2,...,k}

BJ .

It follows since BJ ⊆ ∩i∈IAi that

∩i∈IAi =
⋃

I⊆J⊆{1,2,...,k}

BJ .

Next I claim that the BJ are also disjoint. That is, if J 6= K then BJ ∩ BK = ∅. Take
two sets J 6= K and order them so that J 6= J ∪ K. If we take an x ∈ BJ ∩ BK , then
x ∈ ⋂k∈K Ak and x ∈ ⋂j∈J Aj , hence it is in

⋂
j∈J∪K Aj , and since J 6= J 6= K x /∈ BJ by

definition, but this is a contradiction. Hence BJ ∩BK must be empty.
Therefore we have by the addition principle that

aI = |∩i∈IAi| =
∑

I⊆J⊆{1,2,...,k}

|BJ | =
∑

I⊆J⊆{1,2,...,k}

bJ .

�

Example 20. Say that we want to compute the number of 5 cards hands are there were
every suit appears at least once (or equivalently the number of 5 card hands where at least

one suit does not appear and subtract this result from

(
52
5

)
the total number of 5 card

hands).
Since there are 4 suits, exactly one of the 4 will have to appear twice. A 5 card hand

where every suit appears at least once is determined by choosing a suit which appears
twice, two cards from that suit and one card from each of the remaining suits. By the

multiplication principle there are 4 ·
(

13
2

)
· 133 such hands.

Now lets try to count the same value using the inclusion-exclusion formula. For a set of
suits I, let AI be the set of 5 card hands that do not contain the suits in I. For instance
A{♥,♦} is the set of 5 card hands that don’t contain either hearts or diamonds. Let S
represent the set of all 5 card hands, then to compute the number of 5 card hands where
every suit appears at least once we are looking for the cardinality of S − A{♥} ∪ A{♦} ∪
A{♣} ∪A{♠}.

By the principle of inclusion exclusion, this is∑
J⊆{♥,♦,♣,♠}

(−1)|J | |AJ | .

But the cardinality of AJ is equal to

(
13 · (4− |J |)

5

)
and since there are

(
4
k

)
subsets J of

size k of {♥,♦,♣,♠}, then the number of 5 card hands where every suit appears at least
once is (

52
5

)
− 4 ·

(
39
5

)
+ 6 ·

(
26
5

)
− 4 ·

(
13
5

)
.
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This expression is equal to 4 ·
(

13
2

)
· 133 = 685464.

In that example inclusion-exclusion was not the tool that we wanted to use because it
was much easier to count the hands that contained all of the suits at least once by the
multiplication principle than set up an inclusion-exclusion. But there are other examples
where an application of inclusion-exclusion is the best way to count a quantity.

Example 21. Say that there are cereal boxes, essentially identical, with one of k different
possible prizes and we want to estimate how many boxes of cereal that we need to buy
to have a probability that we have at least one of each of the prizes. To do this we will
compute the number of ways of picking n boxes of cereal such that all of the k prizes
appear.

For a set {1, 2, . . . , k}, let AI represent the ways of picking n boxes of cereal such ith

prize for i ∈ I does not occur. By the multiplication principle |AI | = (k−|I|)n. If we let S
represent the set of choices of n cereal boxes then the number of possible prize sequences
is |S| = kn and we wish to compute |S − A{1} ∪ A{2} ∪ · · · ∪ A{k}|. We apply inclusion
exclusions to conclude that it is equal to∑

I⊆{1,2,...k}

(−1)k|AI | =
k∑

r=0

(−1)k
(
k
r

)
(k − r)n .

So then if we try to compute the probability of picking n boxes and getting all k prizes,
we would divide by the total number of sequences of prizes of length n and this implies

P (all k prizes occur in n choices of cereal boxes) =
k∑

r=0

(−1)k
(
k
r

)
(k − r)n
kn

The most common application of inclusion-exclusion is to compute the number of “de-
rangements” of the numbers {1, 2, . . . , n}. These are the permutations π of {1, 2, . . . , n}
such that π(i) 6= i for all 1 ≤ i ≤ n. This application is explained almost everywhere so I
will refer the reader to any one of the references: [1, Theorem 4.4], [2, Section 4.5], [5], [6].
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