Binary Trees

Incomplete

A Comma-Free Binary Code

Definition: A binary code is comma-free if no prefix of the code of a letter is the code of another letter.

$A=000$	$B=001$	$C=01$
$D=10$	$E=1100$	$F=1101$
$G=111$		

File length $=3 N_{A}+3 N_{B}+2 N_{C}+2 N_{D}+4 N_{E}+4 N_{F}+3 N_{G}$

Morse Code

$$
\bullet \leftrightarrow 0 \quad \longleftarrow \leftrightarrow 10 \quad \text { Comma } \leftrightarrow 11
$$

Expected code length

$$
5 N_{A}+7 N_{B}+8 N_{C}+\cdots+9 N_{Y}+8 N_{Z}
$$

Using single letter english frequencies, the average number of bits per letter is

$$
\frac{5 \cdot 73+7 \cdot 9+8 \cdot 30+\cdots+9 \cdot 19+8 \cdot 1}{1000}=5.738
$$

Leaf Heights

$$
\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{2}}=5 / 8 \quad \frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{1}}=1
$$

Theorem 1 The sequence of integers $h_{1}, h_{2}, \ldots, h_{n}$ are leaf heights of a binary tree if and only if

$$
\sum_{i=1}^{n} \frac{1}{2^{h_{i}}} \leq 1
$$

with equality only if the tree is complete.

Expected Code Length

Theorem 2 The best possible expected code length (bits per letter) is

$$
H=\sum_{i=1}^{n} p_{i} \log _{2} 1 / p_{i}
$$

Proof.
Letter frequenices $N_{1}, N_{2}, \ldots, N_{k}\left(N=\sum_{i=1}^{k} N_{i}\right)$
Code lengths $h_{1}, h_{2}, \ldots, h_{k}$ (from a binary tree)

$$
p_{i}=N_{i} / N \text { and } q_{i}=1 / 2^{h_{i}}
$$

$$
\begin{aligned}
\text { File length } & =\sum_{i=1}^{k} N_{i} h_{i} \\
& =\sum_{i=1}^{k} N_{i} \log _{2} 2^{h_{i}} \\
& =N \sum_{i=1}^{k} p_{i} \log _{2} 1 / q_{i} \\
& \geq N \sum_{i=1}^{k} p_{i} \log _{2} 1 / p_{i}=N H
\end{aligned}
$$

Huffman Heights

Theorem 3 A letter that occurs with probability p will be represented by a leaf with height $h \leq\left\lceil\log _{2} 1 / p\right\rceil$ in the Huffman tree.

Proof (by induction) Assume that the height of a particular leaf in T_{1} is $h \leq\left\lceil\log _{2} q_{1} / p\right\rceil$.

The height of that same leaf in the resulting tree is exactly $h+1$, which is bounded above by:

$$
h+1 \leq\left\lceil\log _{2} \frac{q_{1}}{p}+1\right\rceil=\left\lceil\log _{2} \frac{2 q_{1}}{p}\right\rceil \leq\left\lceil\log _{2} \frac{q_{1}+q_{2}}{p}\right\rceil
$$

Note that $q_{2} \geq q_{1}$, as assumed in the construction of the Huffman code.

Expected Code Length

Theorem 4 The Huffman Code yields expected code length within 1 of the entropy, H.

Proof. Assume that $h_{i}=\left\lceil\log _{2} 1 / p_{i}\right\rceil$.

$$
\sum_{i=1}^{k} \frac{1}{2^{h_{i}}}=\sum_{i=1}^{k} \frac{1}{2^{\left[\log _{2} 1 / p_{i}\right]}} \leq \sum_{i=1}^{k} \frac{1}{2^{\log _{2} 1 / p_{i}}}=\sum_{i=1}^{k} \frac{1}{1 / p_{i}}=1
$$

Therefore the sequence $h_{1}, h_{2}, \ldots h_{k}$ corresponds to a binary tree

$$
\begin{aligned}
& \text { Expected code length }(\mathrm{ECL})=\sum_{i=1}^{k} p_{i} h_{i}=\sum_{i=1}^{k} p_{i}\left\lceil\log _{2} 1 / p_{i}\right\rceil \\
& H=\sum_{i=1}^{k} p_{i} \log _{2} 1 / p_{i} \leq E C L \leq \sum_{i=1}^{k} p_{i}\left(\log _{2} 1 / p_{i}+1\right)=H+1
\end{aligned}
$$

