1. Suppose that the random variables
$\mathrm{X}, \mathrm{y}, \mathrm{z}$ are obtained by spinning the adjoining roulette, with X given by the innermost circle, $Y$ given by the intermediate circle and z given by the outer circle.
a) Calculate $P[X=3, Y=1]$
b) Are $X$ and $Y$
independent?
Are X and Z
independent?
Are $Y$ and $Z$ independent?
C) Is any one of these variables dependent on the others?
d) Calculate $\mathrm{E}(\mathrm{X})$
e) Calculate $\mathrm{P}[\mathrm{X}=0 \mid \mathrm{Z}=1$ or 3$]$
f) Calculate $E(Z \mid X=0)$
g) Suppose you bet 1 dollar that

$X+Z=2$. Suppose you win w dollars
if $\mathrm{X}+\mathrm{Z}=2$ and lose your dollar otherwise.
What value should w have to make this
a fair bet.
(Note that the bet is fair if on the average you can expect to break even)
2. As is now usual, we associate to letters of the alphabet the numbers, "space" is $26, \$$ is 27 and @ is 28 . Decrypt the following message JH@\$S YDLEEROLBZTTPHXDTGGQAI

## where the Hill matrix is

1916
1125

## and we are working modulo 29.

3. The following message

DGDDF AFAAF XDFDF DAADA GVVVD
FAAXG GAVFA XAAVA DFFXG FDDDD
was encrypted using the ADFGVX system, with
the attached ADFGVX square and the permutation 10928761543

Unfortunately some of the letters in the square were lost as you can see.

|  | A | D | F | G | V | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | T | E | L | S | C | 0 |
| D | P | I | N |  |  |  |
| F | D | F | G |  |  |  |
| G | M | Q | U |  |  |  |
| V | Y | Z | 0 |  |  |  |
| X | 4 | 5 | 6 |  |  |  |

Recover the original message.

## 4. Decrypt the following

AF FV AA GG VD FF DF DD GG FA
knowing that it was encrypted using ADFGVX encipherment scheme and the keys

| F | L | U | B | $E$ | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N | $T$ | S | A | $C$ | $D$ |
| G | $H$ | $I$ | $J$ | $K$ | $M$ |
| $O$ | $P$ | $Q$ | $V$ | $W$ | $X$ |
| $Y$ | $Z$ | 0 | 1 | 2 | 3 |
| 4 | 5 | 6 | 7 | 8 | 9 |

and 35179410286
(1) The random variables $X, Y$, and $Z$ are determined by spinning the wheel below. Determine the following relations.
(a) are $X$ and $Z$ independent?
(b) are $Y$ and $Z$ independent?
(c) is $X$ dependent on $Y$ ?
(d) is $Y$ dependent on $X$ ?
(e) is $Z$ dependent on $Y$ ?
(f) is $Z$ dependent on $X$ ?
(g) is $X$ dependent on $Y$ and $Z$ ?
(2) Find the probabilities:
(a) $P(X=0)$
(b) $P(X=0$ or $Y=0)$
(c) $P(X=0$ and $Y=0)$
(d) $P(X=0 \mid Y=0)$
(e) $P(X=0 \mid Z=2)$

\#7 The following was encrypted with the snail encipherment system, decrypt it.
IAMSS ANSIS AUTNC KGAOS URANY

