SOME CONNECTIONS BETWEEN ALGEBRAIC EXPRESSIONS AND SEQUENCES: PART I

FEBRUARY 9, 2004

Let $A(q) = a_0 + a_1 q + a_2 q^2 + a_3 q^3 + \cdots$ and $B(q) = b_0 + b_1 q + b_2 q^2 + b_3 q^3 + \cdots$ where the integers a_i represent a sequence and b_i represent another sequence and q is a variable. That is, the coefficient of q^n in A(q) is a_n and the coefficient of q^n in B(q) is b_n . Recall that $1/(1-q)=1+q+q^2+q^3+q^4+\cdots$ and by taking the derivative of this equation we can show that

$$1/(1-q)^2 = \frac{d}{dq}(1/(1-q)) = \frac{d}{dq}(1+q+q^2+q^3+q^4+\cdots) = 1+2q+3q^2+4q^3+\cdots.$$

What is the coefficient of q^n in the following expressions?

- (1) cA(q) (c is a constant here)
- (2) A(q) + B(q)
- $(3) q^m A(q)$
- (4) $A(q) + q^{n-m}B(q)$
- (5) A'(q)
- (6) A''(q)
- (7) A(q)B(q)
- (8) $A(q)^2$
- (9) $A(q)/(1-q^2)$
- $(10) A(q)/(1-q)^2$
- (11) A'(q)/(1-q)
- $(12) (1+q)^k A(q)$
- (13) A(q)/(1-q)
- $(14) A(q^2)$
- (15) $(1+q+q^2)A(q)$
- (16) $\frac{1-q^k}{1-q}A(q)$ (17) A(q) + A(-q)
- (18) A(q) A(-q)