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2.1 Project information

Pick a theorem based on the subject matter of MATH 6121, and write a cor-
responding computer program (e.g. using SageMath, Maple, Mathematica,
MATLAB, C++, etc.).

1. Decide what theorem/construction you want to implement, and come
up with a proposal.

2. Write functions/programs to compute the theorem/construction. It
needs to be well-documented. You need to provide:

• A description of each function used;

• A description of the input variables and the output; and

• Examples of how the functions work.

3. Give a simple example of your program in use.

Here is an illustration of an idea for a subject for this project. Write a
function which computes the matrix C[T ]B as output, where B, C, and T are
given by the following input:

(i) An input basis B for a vector space V ;

(ii) An output basis C for a vector space W ; and

(iii) A linear transformation T : V → W .

In particular, consider a SageMath implementation for this function, e.g.
with a SageMath function

lin_trans_to_matrix(B, C, T)

the output of which is a matrix.
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2.2 Direct sums of vector spaces

V finitely generated ⇐⇒ Cn.

Given a basis B, with LB : V → Cn, and T : V → W , and a basis C for W ,
then C[T ]B is a matrix of dimension dim(W )× dim(V ).

If M = C[T ]B then LC ◦ T = M ◦ LB.

Exercise 2.1. If ~u ∈ Cn and M~u = ~0Cm , then show that T (L−1B (~u)) = ~0W .

Direct sum: V ⊕W = {(v, w) : v ∈ V,w ∈ W}.

If BV = {~v1, ~v2, . . . , ~vn} and BW = {~w1, ~w2, . . . , ~wm} are bases for V and W ,
then

BV⊕W = {(~v1, 0) , (~v2, 0) , . . . , (~vn, 0) , (0, ~w1) , (0, ~w2) , . . . , (0, ~wm)}

is a basis for V ⊕ W , with addition and scalar multiplication defined as
follows.

+⊕ (~v, ~w) +⊕ (~x, ~y) = (~v + ~x, ~w + ~y)

·⊕ c ·⊕ (~v, ~w) = (c~v, c~w).

Exercise 2.2. Check that V ⊕W is a vector space with respect to the above
operations.

Take T : V → X and Q : W → Y .

Then define
T ⊕Q : V ⊕W → X ⊕ Y

so that
(~v, ~w) 7→ (T (~v) , Q (~w))

for ~v ∈ V and ~w ∈ W .

Problem 2.3. What is BX⊕Y
[T ⊕Q]BV ⊕W

?

Exercise 2.4. Let dim(V ) = n, dim(W ) = m, dim(X) = r, and dim(Y ) = s.
Prove that BX⊕Y

[T⊕Q]BV ⊕W
is equal to the following (r+s)×(n+m) matrix.

n m
r
s

[
BX [T ]BV 0

0 BY [Q]BW

]
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Recall that the matrix BX [T ]BV may be defined as

BX [T ]BV = [LBX (T (~v1)), LBX (T (~v2)), . . . , LBX (T (~vn))] ,

where T : V → W denotes a linear transformation, and LBX : W → Cr is as
defined in the previous lecture.

2.3 Tensor products of vector spaces

Definition 2.5. Let V and W be vector spaces, and let BV and BW respec-
tively denote bases of V and W . Then we define the tensor product V ⊗W
of V and W as

span {~vi ⊗ ~wj : ~vi ∈ BV , ~wj ∈ BW}

so that
(a~v + b~x)⊗ ~w = a (~v ⊗ ~w) + b (~x⊗ ~w)

and
~v ⊗ (a~w + b~x) = a (~v ⊗ ~w) + b (~v ⊗ ~x) .

Remark 2.6. Intuitively, you can think of the tensor product V ⊗W as con-
sisting of “pairs with special properties”. Intuitively, you can think of taking
tensor products as “a way of grouping things together”. Taking the direct
sum of vector spaces and taking the tensor product of vector spaces both
involve the important concept of “building larger vector spaces from smaller
ones”. In order to intuitively understand that the direct sum of vector spaces
and the tensor product of vector spaces are very different constructions, you
need to “distinguish how the pairs are created”.

Proposition 2.7. Let V be a vector space of dimension n and let W be a
vector space of dimension m. Then

V ⊕W = (dim (V )) + (dim (W )) = n+m

and
V ⊗W = (dim (V )) (dim (W )) = nm.

Exercise 2.8. Let V = R2, and let W = R2. With respect to the tensor
product V ⊗W , show that:

(1, 1)⊗ (1, 4) + (1,−2)⊗ (−1, 2) = 0 (1, 0)⊗ (1, 0) +
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6 (1, 0)⊗ (0, 1) +

3 (0, 1)⊗ (1, 0) +

0 (0, 1)⊗ (0, 1) .

With respect to the direct sum V ⊕W , show that

((1, 1) , (1, 4)) + ((1,−2) , (−1, 2)) = ((2,−1) , (0, 6)) .

Question 2.9. What does it mean to take a linear transformation on a
tensor?

Let T : V → X and Q : W → Y be linear transformations given as follows:

T (~vi) =
r∑

j=1

ai,j~xj

Q(~wk) =
s∑

`=1

bk,`~y`.

We thus define the mapping

T ⊗Q : V ⊗W → X ⊗ Y

as follows:

(T ⊗Q) (~vi ⊗ ~wk) =
r∑

j=1

s∑
`=1

ai,jbk,` (~xj ⊗ ~y`) .

The matrix corresponding to this linear transformation may be defined using
the Kronecker product.

Basis for V ⊗W :

BV⊗W = {~v1 ⊗ ~w1, ~v1 ⊗ ~w2, . . . , ~v1 ⊗ ~wm, ~v2 ⊗ ~w1, . . . , ~vn ⊗ ~wm} .

If BX [T ]BV = A and BY [Q]BW = B, then the matrix

BX⊗Y
[T ⊗Q]BV ⊗W

is equal to the following Kronecker product of matrices.
a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
...

. . .
...

ar,1B ar,2B · · · ar,nB
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Exercise 2.10. Let BV = {~v1, ~v2, ~v3} and BW = {~w1, ~w2}. Let φ : V → V
be such that

φ (a~v1 + b~v2 + c~v3) = c~v1 + 2a~v2 − 3b~v3,

and let ψ : W → W be such that

ψ (a~w1 + b~w2) = (a+ 3b) ~w1 + (4b− 2a) ~w2.

Compute BV [φ]BV , BW [ψ]BW , and

BV ⊗W
[φ⊗ ψ]BV ⊗W

.

Note that BV⊗W consists of six elements that have a specific order.

2.4 Basic group theory

Definition 2.11. A group is a set G endowed with an associative binary
operation ◦G such that there is an element e ∈ G such that

e ◦G a = a ◦G e = a

and for every a ∈ G, there exists an element a−1 ∈ G such that a ◦G a−1 = e.

Example 2.12. (Z,+) is a group.

Example 2.13. (Q,+) is a group.

Example 2.14. (R,+) is a group.

Example 2.15. (C,+) is a group.

Example 2.16. (R \ {0}, ·) is a group.

Remark 2.17. (Z \ {0}, ·) is not a group.

Definition 2.18. The cyclic group Cn is the group with an underlying set
of the form {1, a, a2, . . . , an−1} such that ar · as = ar+s and an = 1.

Definition 2.19. The dihedral group Dn is the group with an underlying
set of the form {

1, a, a2, . . . , an−1, b, ba, ba2, . . . , ban−1
}

such that {1, a, a2, . . . , an−1} is cyclic, and ba = a−1b, and b2 = 1.
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The symmetric group Sn (or more generally SX , where X is a finite set)
consists of permutations on an n-element set, such that the compositions of
permutations is the underlying binary operation:

SX = (permutations of X, ◦) ,

where ◦ denotes the composition operation with respect to permutations.

Recall that the composition of permutations σ : X → X and τ : X → X in
SX is given by composing τ and σ as functions. For example, let

σ =

(
1 2 3 4 5 6 7
3 5 1 6 7 2 4

)
and

τ =

(
1 2 3 4 5 6 7
2 3 4 5 6 7 1

)
,

and consider the product τ ◦σ ∈ S7. To evaluate the composition τ ◦σ, begin
by evaluating the expression (τ ◦ σ)(1):

(τ ◦ σ)(1) = τ(σ(1)) = τ(3) = 4.

Similarly, we have that:

(τ ◦ σ)(2) = τ(σ(2)) = τ(5) = 6.

Continuing in this manner, we have that:

τ ◦ σ =

(
1 2 3 4 5 6 7
4 6 2 7 1 3 5

)
.

Definition 2.20. A homomorphism on groupsG→ H is a map φ : G→ H
such that φ(g1 ◦G g2) = φ(g1) ◦H φ(g2).

Definition 2.21. A homomorphism which is a bijection is an isomorphism.

Problem 2.22. Given a natural number n, how many groups of order n are
there up to isomorphism?

# of elements in G 1 2 3 4 5 6 7
# of groups up to isomorphism 1 1 1 2 1 2 1
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The above integer sequence is described in the On-Line Encyclopedia of
Integer Sequences (OEIS). In particular, this sequence given by the OEIS
sequence labeled A000001 (see http://oeis.org/A000001).

Letting an = A000001n denote the number of groups of order n ∈ N up to
isomorphism, the value of an is given below for n = 1, 2, . . . , 17.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
an 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1

Next lecture: groups acting on a set, groups acting on a vector space.
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