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5.1 Quotient groups and normal subgroups

The idea of a quotient structure comes up over and over again in different
areas of algebra.

With respect to vector spaces, we can construct quotient spaces.

We can define quotient structures with respect to rings, modules, etc.

Exercise 5.1. If N is normal in G, then ∀g ∈ G ∃g′ ∈ G gN = Ng′.

Claim 5.2. Letting N ≤ G, we have that: N E G iff ∀g ∈ G gN = Ng.

Remark 5.3. Normal subgroups are commonly defined as subgroups which
satisfy the property given in the above claim.

Proposition 5.4. A (nonempty) subset S of a group G is a subgroup if
x−1y ∈ S for all x, y ∈ S.

Proof. Suppose that S is such that x−1y ∈ S for all x, y ∈ S. If we choose
x = y, then x−1y = x−1x = e = eG ∈ S, so S constains the identity element
e = eG of G. If we choose y = e, then we have that ∀x ∈ S x−1e = x−1 ∈ S.
Letting a, b ∈ S be arbitrary, letting x = a−1 and y = b, since x−1y ∈ S, we
have that (a−1)−1b ∈ S, and thus ab ∈ S, thus proving that S is closed with
respect to the underlying binary operation of G.

Remark 5.5. The property concerning subgroups given in the above propo-
sition is sometimes referred to as the One-Step Subgroup Test1.

Definition 5.6. Let A ⊆ G. We define the centralizer of A in G as the set

CG(A) =
{
g ∈ G

∣∣ gag−1 = a for all a ∈ A
}
,

1See Joseph A. Gallian’s Contemporary Abstract Algebra.
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and the set
NG(A) =

{
g ∈ G

∣∣ gA = Ag
}

is referred to as the normalizer of A in G.

Warning: The term normalizer was defined differently in class as “NG(A) =
{g ∈ G

∣∣ gag−1 ∈ A for all a ∈ A}”. It is appears that this definition is
incorrect. Consider the following exercise to show that this definition is not
even a group if G is not finite.

Exercise 5.7. Let MG(A) = {g ∈ G
∣∣ gag−1 ∈ A for all a ∈ A}, then show

that MG(A) is not a group in general. Hint: Take G to be the group of
permutations of the set of integers and show that for A = {σ ∈ G : σ(i) =
i, for i < 0} that g(x) = x+ 1 ∈MG(A), but g−1(x) = x− 1 /∈MG(A).

Exercise 5.8. Show that if G is finite then NG(A) = MG(A). Where does
the proof fail if G is infinite?

Exercise 5.9. Show that CG(A) ≤ NG(A) ≤ G.

Remark 5.10. In fact, it is necessarily true that CG(A) E NG(A)
2.

Definition 5.11. The set CG(G) is denoted as Z(G) and is called the center
of the group G.

Perfect example of a project: write a program that returns the center of a
group, and which shows that the center of a group forms a subgroup.

5.2 Group isomorphism theorems

The First Isomorphism Theorem: Let H and G be groups. The for a
morphsim φ : G → H, we have that ker(φ) E G, and furthermore, we have
that G/ker(φ) ∼= im(φ).

The Second Isomorphism Theorem: LetG be a group, and letH,K ≤ G
be such that H ≤ NG(K), H ∩K E H, and HK/K ∼= H/(H ∩K).

You are not expected to memorize the Second Isomorphism Theorem.

The Third Isomorphism Theorem: Let G be a group and let H,K E G,
with H E K. Then K/H is normal in G/H, and furthermore, we have that
(G/H)/(K/H) ∼= G/K.

2See https://en.wikipedia.org/wiki/Centralizer_and_normalizer.
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Proof exercise #1: Write ψ : G/ker(φ)→ im(φ), so that

gker(φ) 7→ φ(g)

for an arbitrary coset gker(φ) in the domain of ψ. Show that ψ is well-defined
and bijective.

Proof exericse #2: Define τ : H → HK/K so that

h 7→ hK

for all h ∈ H. Show that τ is a group homomorphism, and that ker(τ) =
H ∩K. You may also need to check that τ is surjective.

Proof exercise #3: Define γ : G/H → G/K, so that

gH 7→ gK

for each coset gH in the domain of γ. Show that γ is a well-defined group
homomorphism, and show that ker(γ) = K/H. You may also need to check
that γ is surjective.

Let G denote the dihedral group D4, and let D4 be denoted as follows:

D4 =
{
1, a, a2, a3, b, ba, ba2, ba3

}
.

Now let K and H denote the following cyclic subgroups of G:

K =
{
1, a, a2, a3

} ∼= C4

H =
{
1, a2

} ∼= C2.

It is easily seen that H E K E G. Now, compute the quotient groups G/H
and G/K:

G/H =
{{

1, a2
}
,
{
a, a3

}
,
{
b, ba2

}
,
{
ba, ba3

}}
G/K =

{{
1, a, a2, a3

}
,
{
b, ba, ba2, ba3

}}
.

Now, let γ : G/H → G/K be as given above. Compute the expressions
γ({1, a2}) and γ({b, ba2}) as indicated below.

γ({1, a2}) = γ({a, a3}) = {1, a, a2, a3},
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γ({b, ba2}) = γ({ba, ba3}) = {b, ba, ba2, ba3}.

Now compute the kernel of γ:

ker(γ) =
{{

1, a2
}
,
{
a, a3

}}
= K/H.

Now, by the third isomorphism theorem, we have that (G/H)/(K/H) is
isomorphic to G/K. This is illustrated below.{{{

1, a2
}
,
{
a, a3

}}
,
{{
b, ba2

}
,
{
ba, ba3

}}}
= (G/H)/(K/H)
∼= G/K

=
{{

1, a, a2, a3
}
,
{
b, ba, ba2, ba3

}}
.

The Fourth Isomorphism Theorem: Let G be a group and let H E G.
Then the canonical projection morphism π : G→ G/H whereby

g 7→ gH

“induces” the bijections indicated below:

{H E K ≤ G} ←→
{
K ≤ G/H

}
{H E K E H} ←→

{
K E G/H

}
.

Proof exercise #4 : Show that the mappings indicated below are bijective.

K 7→ {kH : k ∈ K} = K{
g ∈ G

∣∣ π(g) ∈ K}← [ K ≤ G/H.

Remark 5.12. Intuitively, normal subgroups are important for “pulling out
the structure” of larger groups. This is a very useful way of intuitively think-
ing about normal subgroups.

5.3 Hölder’s program

Question 5.13. Given a certain class of rings or algebras, how can we list
or classify them all?

Remark 5.14. Intuitively, there is something very difficult to understand
about the classification of finite groups.
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Remark 5.15. The classification of finite groups is relevant to many other
fields in algebra.

Hölder proposed a way of classifying finite groups.

STEP 1: Classify all of the groups that do not have a normal subgroup,
except for the trivial subgroup and the corresponding group itself. These
groups are referred to as simple groups.

STEP 2: What are all the ways you can “put together” simple groups to
make the rest?

Definition 5.16. Let A, B, and C be groups, and let f1 and f2 be group
homomorphisms as given in the sequence

A
f1−→ B

f2−→ C.

Then this sequence is said to be an exact sequence if im(f1) = ker(f2).
This definition may be generalized inductively.

Remark 5.17. Observe that if B α−→ C → {1} is exact, then it necessarily
follows that im(α) = C, so α must be onto (surjective) as a result.

Remark 5.18. Observe that if {1} → A
α−→ B is exact, then letting id

denote the mapping from {1} to A which maps 1 to the identity element in
A, we have that im(id) = {1A} = ker(α), so it necessarily follows that α is
one-to-one (injective). Recall that a group homomorphism is injective if and
only if its kernel is trivial.

Now, suppose that the following sequence is exact, where the “cloud” symbol
denotes an unknown group. What can “go between” the mappings α and β
illustrated below?

{1} −→ A
α−−−→ β−−−→ B −→ {1}

Since the above sequence is exact by assumption, from the definition of the
term exact sequence given in Definition 5.16, we have that:

(i) {1} = ker(α);
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(ii) im(α) = ker(β); and

(iii) im(β) = B.

Observe that α is injective and β is surjective.

Now, using the first isomorphism theorem, we thus obtain the following se-
quence of group isomorphisms.

im(β) = B ∼=

/
ker(β) ∼=

/
im(α) ∼=

/
A

Note that im(α) ∼= A, since:

im(α) ∼= A/ker(α) = A/ {1A} ∼= A.

Now, observe that if is a simple group, then A is either the

trivial subgroup or the entire group itself.

Recall that “STEP 1” in the above formulation of Hölder’s program concerns
the classification of finite simple groups.

STEP 1 SOLUTION: There are a total of 18 infinite families of simple
groups, and there are a total of 26 simple groups that don’t “fit in” these
infinite families.

5.3.1 Infinite families of simple groups

Observe that Z/pZ is simple for each prime number p, where:

Zp = Z/pZ = {. . . ,−2,−1, 0, 1, 2, . . .} / {. . . ,−2p,−p, 0, p, 2p, . . .} .

By Lagrange’s theorem, it is clear that Z/pZ is a simple group for a prime
p: given a subgroup H ≤ Z/pZ, then the order |H| of the subgroup H must
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divide the order of Z/pZ, but since the order of Z/pZ is equal to the prime
p, the order of H is either 1 or p, so H is either the trivial subgroup, or
H = Z/pZ.

Remark 5.19. Arguably, one should avoid using the notation “Zp” to denote
the structure Z/pZ, because the symbol Zp is commonly used to denote the
ring of p-adic integers3.

Definition 5.20. The alternating group An is the group consisting of all
even permutations in Sn. Equivalently, this group may be defined as the
group of n× n permutation matrices of determinant 1.

Recall that a permutation matrix is a square binary matrix with has
exactly one entry equal to 1 in each row and each column. For example, the
matrix 

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


is a permutation matrix. Since the (1, 2)-entry of this matrix is equal to 1,
the above permutation matrix corresponds to a permutation σ ∈ S4 whereby
σ1 = 2. Similarly, we have that σ2 = 3, since the (2, 3)-entry in the above
matrix is equal to 1. Continuing in this manner, we have that the above
matrix corresponds to the permutation(

1 2 3 4
2 3 1 4

)
in the symmetric group S4.

Observe that the determinant of a permutation matrix either 1 or −1. The
mapping

φ : Sn → {1,−1} ∼= C2

whereby φ(σ) = det(σ) = sign(σ) for all σ ∈ Sn is group homomorphism
if we endow the codomain of φ with a multiplicative group structure, and
ker(φ) = An. Observe that An E Sn.

The following theorem is historically significant with respect to the history
of group theory.

3See https://en.wikipedia.org/wiki/P-adic_number.
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Theorem 5.21. The alternating group An is simple for n ≥ 5.

There are more complicated examples of infinite families of finite simple
groups, as suggested by the following result.

Claim 5.22. The quotient group SLn(F)/Z(SLn(F)) is simple for each finite
field F, and each natural number n ≥ 4.

A really good project idea: “get your hands on” SLn(F)/Z(SLn(F)) for any
finite field F using a computer algebra system.

The following result is easily verified using the Fundamental Theorem of
Finitely-generated Abelian Groups, which we have not covered in class.

Claim 5.23. A finite abelian group is simple iff it is isomorphic to Zp for
some prime number p.

The Feit-Thompson Theorem (1963): A finite group of odd order is
simple iff it is isomorphic to Zp.

Remark 5.24. Intuitively, trying to study finite groups is really a motivation
for “what group theory is all about.”

Question 5.25. Given two groups A and B, how can we “combine” these
groups to form a larger group? In other, how can we “create” larger groups
from smaller groups?

Consider an exactly sequence of the form

{1} −→ A −→ A×B −→ B −→ {1}

where
A×B = {(a, b) : a ∈ A, b ∈ B}

is endowed with a binary operation ◦ = ◦A×B whereby

(a, b) ◦A×B (a′, b′) = (aa′, bb′)

for a, a′ ∈ A and b, b′ ∈ B.

The set A × B endowed with the binary operation ◦A×B given above forms
a group, which is referred to as the direct product of A and B.

With regard to Question 5.25, there are other constructions to “put” two
groups together. The semidirect product is an example of a construction
of this form.
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Exercise 5.26. Recall that An is simple for n ≥ 5. However, it is not true
that A4 is a simple group. Prove that A4 is not a simple group using a
counterexample, and write out all 12 elements in A4.
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