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6.1 The Jordan-Hölder theorem

A subnormal series of a group G is a sequence of subgroups of G such that each such subgroup is a
(proper) normal subgroup of the next.

If G is a finite group, then there exists a sequence of normal subgroups

{1} = N0 / N1 / · · · / Nk−1 / Nk = G

such that Ni / Ni+1 and Ni+1/Ni is simple. A sequence of this form is referred to as a composition
series, and factors of the form Ni+1/Ni are referred to as composition factors.

So, a composition series may be defined as a subnormal series such that each factor group is simple.

There are mainly two types of applications of the group-theoretic results given in MATH 6121:

(i) Applications involving enumerative problems, e.g., enumerative problems involving permutations;
and

(ii) Applications in Galois theory.

Question 6.1. What are some applications of structure theorems for finite groups?

Definition 6.2. A finite group G is said to be solvable if it has a subnormal series whose factor groups
are all abelian.

Remark 6.3. A fundamental result in Galois theory states that a polynomial equation is solvable by
radicals iff its corresponding Galois group is a solvable group.

Claim 6.4. Given a composition series

{1} = N0 / N1 / · · · / Nk−1 / Nk = G,

and second composition series

{1} =M0 / M1 / · · · / Mk−1 / M` = G,

then there exists a permutation π such that Ni+1/Ni
∼= Mπ(i)+1/Mπ(i) for all indices i.

The above claim is one way of formulating the Jordan-Hölder theorem.

Our strategy is to use induction. First of all, if G is or prime order, or is of order 1, then G is simple.
So, in this base case, the only possible composition series is of the form {1} E G.

Now suppose that it is not the case that G is simple. So, there exists a nontrivial proper normal subgroup
N of G.

So, there is a composition series for N and G/N , as illustrated below:
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{1} = H0 / H1 / · · · / H` = N ≤ H`+1 ≤ H`+2 ≤ · · · ≤ G
l l l l

N/N / H`+1 / H`+2 / · · · / G/N

By the fourth isomorphism theorem, we have that there is a bijection between the set of expressions of
the form H`+i ≤ G/N and the set of expressions of the form H`+i ≤ G.

If H`+i E G/N , then H`+i E G, but we need to show the result given in the following exercise.

Exercise 6.5. Check that since H`+i E H`+i+1 then H`+i E H`+i+1.

Now, we want to show that given two composition series for a group, these composition series are
“essentially the same up to permutation”.

According to Wikipedia, the Jordan-Hölder theorem states that any two composition series of a given
group are equivalent in the sense that they have the same composition length and the same composition
factors, up to permutation and isomorphism.

{1} = N0 E N1 E · · · E Nk E Nk+1

=

G

=

{1} =M0 E M1 E · · · E M` E M`+1

We want to show that the above composition factors are permuted. We may assume without loss of
generality that M` 6= Nk.

6.1.1 An illustration of the Jordan-Hölder theorem

To illustrate the Jordan-Hölder theorem, consider the normal subgroups of the cyclic group Z6 = Z/6Z ∼=
C6. Since this group is abelian, each subgroup of this group is a normal subgroup.

Writing Z6 = {0, 1, 2, 3, 4, 5}, we have that the set {0, 2, 4} forms a normal subgroup of Z6 which is
isomorphic to Z3, and the set {0, 3} forms a normal subgroup of Z6 which is isomorphic to Z2.

Now consider the following sequences of normal subgroups:

{0} / Z3 / Z6

l l l
{0} / Z2 / Z6

The above sequences are both subnormal series.

Since Z3/{0} ∼= Z3 is a simple group, and since Z6/Z3
∼= Z2 is a simple group, we have that the sequence

{0} / Z3 / Z6

is a composition series.

Similarly, since Z2/{0} ∼= Z2 is a simple group and since Z6/Z2
∼= Z3 is a simple group, we have that

the sequence
{0} / Z2 / Z6
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is also a composition series.

Consider the lattice structure formed by the subgroups of Z6 illustrated below 1.

There is a natural isomorphism between the composition series {0} /Z3 /Z6 and the composition series
{0} /Z2 /Z6. Moreover, there is a natural isomorphism between the composition factors in these series,
as illustrated below:

Z3/ {0} Z6/Z3

l l
Z6/Z2 Z2/ {0}

6.1.2 A sketch of an inductive argument involving the second isomorphism theorem

Again consider the following two composition series, and recall that we may assume without loss of
generality that M` 6= Nk.

{1} = N0 E N1 E · · · E Nk E Nk+1

=
G

=

{1} =M0 E M1 E · · · E M` E M`+1

To prove that the composition factors given by each of the above series are permutations of each other,
we make use of an inductive approach, illustrated by the following diagram.

1See https://en.wikipedia.org/wiki/Lattice_of_subgroups.
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Is it true that Nk ∩M` E Nk?

Verify that Nk ∩M` E Nk and that Nk ∩M` EM`.

To verify this, apply the second isomorphism theorem.

Observe that we’re not directly showing how to obtain a permutation for the composition factors. We
are using a complicated induction argument that “obliquely” shows that there exists a permutation for
the composition factors.

By the second isomorphism theorem, we have that:

Nk/Nk ∩M`
∼= NkM`/M`.

You need to show that:

(i) NkM` forms a subgroup;

(ii) NkM` is normal in G; and

(iii) NkM` contains Mk and M`.

Use the above argument to show that NkM` = G.

∴ Nk/Nk ∩M`
∼= G/M`.

Similarly, we have that M`/Nk ∩M`
∼= G/Nk.

Exercise 6.6. “Fill in the details” of the complicated induction argument illustrated above, to show
that all of the composition factors are permuted.

Remark 6.7. In a way, the above argument is “telling us something about the integers in general ” if we
look at this induction argument in a “larger context”.

For abelian groups, this type of induction argument works out fairly simply. Recall that if G is abelian
and simple, then G ∼= Zp for some prime p.

Claim 6.8. For abelian groups, the composition series is such that the difference between each term is
given by a prime order. In this case, the composition series must have factors which are of prime order.

Proof. If G is abelian, take any element x in G, and let order(x) = n. If n is not prime then xn/p is
an element of order p = order(xn/p). So there is a subgroup of G of order p. Consider the composition
series of G/〈xn/p〉. By the fourth isomorphism theorem, there is a composition series of G/〈xn/p〉, and
as a consequence, there exists a composition series of G whose “last step” is 〈xn/p〉.

Exercise 6.9. “Fill in the details” of the above proof.

Question 6.10. What does the fundamental theorem of finitely-generated abelian groups tell us about
the composition series for finitely-generated abelian groups?

Exercise 6.11. There are 5 groups of order 8 = 23. Find all the possible composition series.

Remark 6.12. The above exercise really gives you a good idea as to how to “exhaust all possibilities”
in terms of finding abelian subgroups.
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Recall that Hölder’s program may be regarded as being based on exact sequences of the following
form.

{1} −→ A
α−−−→ G

β−−−→ B −→ {1} . (6.1)

With respect to the above exact sequence, observe that B ∼= G/A implies |G| = |A||B|.

Now let G be a group of order 8, letting G be as given in (6.1).

What are the possible choices for A and B with respect to the exact sequence given in (6.1)? It should
be fairly clear that the possible groups for A and B are: Z2, Z2 × Z2, and Z4.

Informally, the “second part” of Hölder’s program is related to the following question: How can the terms
in the series given in (6.1) “combine” to form a new group? This question leads us to the important
concept of semidirect products of groups.

6.2 The semidirect product

Exercise 6.13. Let A and B be groups, and for b ∈ B, let φb be an automorphism of A. Define AoφB
as the set

{(a, b) : a ∈ A, b ∈ B}

endowed with the binary operation ◦AoφB on Aoφ B whereby

(a, b) ◦AoφB (a′, b′) = (aφb(a
′), b(b′))

for a, a′ ∈ A and b, b′ ∈ B. Show that AoB forms a group, and show that AoφB = A×B if φb(a) = a
for all b ∈ B, i.e. φb is the identity automorphism on A for all b ∈ B.

Exercise 6.14. Construct morphisms α and β such that the sequence

{1} −→ A
α−−−→ Aoφ B

β−−−→ B −→ {1} .

is an exact sequence.

6.2.1 Dihedral groups as semidirect products

To illustrate the concept of semidirect products of groups, we offer a proof of the elegant formula

Dn
∼= Zn oγ Z2,

writing Z2 = Z+
2 = ({0, 1},+2), and letting γ be given as follows, for i ∈ {0, 1, . . . , n− 1} = Z+

n :

γ0(i) = i

γ1(i) = n− i.

It is convenient to use a different kind of notation with respect to the automorphisms γ0 and γ1. Let
the dihedral group Dn be denoted as

Dn =
{
1, a, a2, . . . , an−1, b, ba, ba2, . . . , ban−1

}
,
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and let Cn denote the cyclic subgroup

Cn =
{
1, a, . . . , an−1

}
for n > 2. Similarly, let C2 denote the set {1, b} under composition, which forms a cyclic subgroup
isomorphic to Z2 = Z/2Z.

Recall that an = 1 and b2 = 1.

The semidirect product Cn oγ C2 is the set

Cn oγ C2 =
{(
ai, bj

)
: 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1

}
and letting γ1(a) = a and γb(a) = a−1, we thus have that the underlying binary operation

◦CnoγC2 = ◦

on the semidirect product Cn oγ C2 is given as follows.(
ai, 1

)
◦
(
ai

′
, bj
)
=
(
ai+i

′
, bj
)

(
ai, b

)
◦
(
ai

′
, bj
)
=
(
aiγb

(
ai

′
)
, b(bj)

)
=
(
ai−i

′
, b(bj)

)
.

Now recall that the dihedral group Dn may be defined as the set

Dn =
{
aibj : 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1

}
endowed with a binary operation ◦Dn whereby:

ai ◦Dn ai
′ ◦Dn bj = ai+i

′
bj,

aib ◦Dn ai
′
bj = ai+i

′
b(bj).

So, the semidirect product shows you where the dihedral group “comes from” in a sense. The following
dihedral relations may be interpreted in a natural way using the semidirect product:

ba = an−1b = a−1b,

bai = an−ib = a−ib,

an = 1.

There are many other examples of the process of “constructing larger groups from smaller groups”.

Question 6.15. To what extent does the semidirect product construct depend on one’s choice of auto-
morphisms?

In answer to the above question, this construct really depends on the structure of the automorphism
group Aut(A) of A. Recall that if we let each automorphism defining a semidirect product be equal
to the identity automorphism, then this semidirect product is actually the direct product. However,
different morphisms from B to Aut(A) generally result in different kinds of semidirect products.
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6.3 Groups of prime power order

Let G be a (finite) group, and let S be a subset of the underlying set of G.

For g ∈ G, write g.S = gSg−1 = {gsg−1 : s ∈ S}.

What are the orbits of G when it acts on itself with this action?

This particular group action is especially useful.

The orbits with respect to this action are referred to as the conjugacy classes of G.

Now, recall that by Burnside’s lemma, we have that:

# of orbits =
1

|G|
∑
g∈G

|StabG ({g})|

=
1

|G|
∑
g∈G

|Fixg(G)| .

Intuitively, Burnside’s lemma is useful because if the set you’re acting on is large, you can “reduce” the
computation of the number of orbits using Burnside’s lemma:

StabG({g}) = Fixg(G) = CG({g}) = NG({g}).

Now, for x ∈ G, let c(x) denote the following set.

c(x) = the set of all elements in G which are conjugate to x
= the set of all expressions of the form gxg−1 for some g ∈ G
=
{
gxg−1

}
g∈G .

Now observe that G may be written as a disjoint union of orbits, i.e. a disjoint union of conjugacy
classes, with

G = c(x1) ] c(x2) ] · · · ] c(xn)

and |c(xi)| = 1 iff xi ∈ Z(G).

We thus obtain the following formulas:

|G| =
n∑
i=1

|c(xi)|

=
n∑
i=1

|c(xi)|=1

|c (xi)|+
n∑
i=1

|c(xi)|>1

|c (xi)|

= |Z (G)|+
n∑
i=1

|c(xi)|>1

|G|
|CG ({g})|

.

As a corollary, we have that if |G| = pn for some n ≥ 1, then |Z(G)| 6= 1. This is because if

p
∣∣|G|
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and
p
∣∣∣ |G|
|CG({g})|

then p
∣∣|Z(G)|.

Therefore, if N / G, then |N ∩ Z(G)| 6= 1.
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