
p-GROUPS AND SYLOW’S THEOREMS

MIKE ZABROCKI

A friend showed me his notes on Sylow’s theorems and his presentation he had a way of
showing the theorems as a direct application of groups acting on sets. I’ve stripped down
his proofs to the minimal details below, fill in the details (at least by doing the exercises,
but it is best to rewrite the whole thing filling in the whole sentences).

Proposition 1. Let G be a p-group acting on a (finite) set E, then

|E| ≡ |FixG(E)| (mod p)

Proof. Break E into orbits E = ORBITG(x1) ∪ ORBITG(x2) ∪ · · · ∪ ORBITG(xn) then

(1) |E| =
n∑

i=1

|ORBITG(xi)| =
n∑

i=1

|G|
|STABG(xi)|

But since STABG(xi) is a sub-group of G, each of |G|
|STABG(xi)| is some pbi with bi ≥ 0. Note

FixG(E) = {xi : 1 ≤ i ≤ n, bi = 0}, therefore

|E| = |FixG(E)|+
n∑

i=1
xi /∈FixG(E)

|ORBITG(xi)| ≡ |FixG(E)| (mod p)

�

Corollary 2. If p prime, and m an integer such that p does not divide m(
pnm

pn

)
≡ m (mod p)

Proof. Take G be Zpnm and H be a subgroup of order pn.1 Let X be the set of subsets

S ⊆ G such that |S| = pn. Note that |X| =
(
pnm
pn

)
and let H act on the elements of X by

left multiplication. The set FixH(X) are the left cosets of H.2 Since we know that there
are m left cosets of H, the corollary follows from Proposition 1. �

We already showed:

Theorem 3. The center of a p-group G is non-trivial.

1Exercise: Show there is a subgroup of order pn

2Exercise: S ∈ FixH(X) if and only if S is a left coset of H

1



2 MIKE ZABROCKI

Proof. Let G act on itself by conjugation, then FixG(G) = Z(G).3 By Proposition 1,

0 = |G| ≡ |FixG(G)| ≡ |Z(G)| (mod p)

so p divides |Z(G)|. �

Theorem 4. (1st Sylow theorem) Sylow p sub-groups always exist.

Proof. Assume that G is a group of order pnm where gcd(p,m) = 1. Let X be the set of
subsets of G of order pn and let G act on X by left multiplication. As in (1), let xi be the

representatives of the orbits. Since |X| =
(
pnm
pn

)
, then |X| ≡ m (mod p) so p does not divide

|X| so there exists at least one xi such that p does not divide |G|/|STABG(xi)| and hence pn

divides |STABG(xi)|. Now take a y ∈ xi, |STABG(xi)| = |{zy : z ∈ STABG(xi)}| ≤ |xi| = pn.4

So |STABG(xi)| is both less than and greater than or equal to pn and so is a group of order
pn. �

Theorem 5. (2nd Sylow theorem) All Sylow p-subgroups are conjugate to each other.

Proof. Let T and S be two subgroups of order pn. Act T on the left cosets of G/S by left
multiplication, then since T is a p-group,

|G/S| ≡ |FixT (G/S)| (mod p).

Since p does not divide |G/S|, FixT (G/S) is non-empty and contains an element gS. Since
T ⊆ gSg−1,5 then T = gSg−1. �

Theorem 6. (3rd Sylow Theorem) Let np be the number of Sylow subgroups, then np

divides the order of G.

Proof. Let G act on the Sylow subgroups by conjugation. We know there is one orbit, so
take one of them, S, and np = |ORBITG(S)| = |G|/|STABG(S)| so np divides |G|. �

Theorem 7. (4th Sylow Thoerem) np ≡ 1 (mod p)

Proof. Fix an S ∈ Sylp(G) and act on all the Sylow subgroups of G (denoted Sylp(G)) by
conjugation. By Proposition 1,

np = |Sylp(G)| ≡ |FixS(Sylp(G))| (mod p)

and it turns out that |FixS(Sylp(G))| = 1. Take a P ∈ FixS(Sylp(G)), then S ⊆ NG(P ).6

Since S and P are both Sylow p subgroups of NG(P ), then by the 1st Sylow theorem,
S = gPg−1 with g ∈ NG(P ) and hence S = gPg−1 = P . �

3Exercise: Show that under this action FixG(G) = Z(G)
4Exercise: Explain why |STABG(xi)| = |{zy : z ∈ STABG(xi)}|
5Exercise: Show that if gS ∈ FixT (G/S), then T ⊆ gSg−1

6Exercise: Show if P ∈ FixS(Sylp(G)), then S ⊆ NG(P ).


