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11 October 13 lecture

11.1 Maschke’s theorem and Schur’s lemma

Maschke’s theorem: Letting V be a G-module over C, then if W is an invariant subspace of V ,
there exists an invariant subspace U ⊆ V such that V = W ⊕ U .

Schur’s lemma: All mappings T which are G-homomorphisms of irreducible modules are either
trivial or are isomorphisms. If the irreducible modules are equal then T = c · Id for some scalar c.

If the characteristic of the scalar ring of a G-module divides |G|, things can go wrong with respect to
Maschke’s theorem.

For example, let G = {e, a} = {eG, a} be the multiplicative cyclic group of order 2, and let V denote
the vector space over the field Z2 = Z/2Z whereby V = LZ2{e1, e2}.

(Z2,+) 0 1
0 0 1
1 1 0

(Z2, ·) 0 1
0 0 0
1 0 1

(G, ·) e a
e e a
a a e

By constructing an appropriate G-action on the module V , we may thus construct an invariant sub-
module W = L {e1} of V which does not have an orthogonal complement as a submodule. We need
to be able to divide by |G| in order to construct an appropriate inner product according to Maschke’s
theorem, but |G| ≡ 0(mod 2) in this case.

Let G act on the additive abelian group V = {0, e1, e2, e1+e2} so that g•0 = 0, and g•(x+y) = g•x+g•y
for x, y ∈ V , with:

eG • e1 = e1,

eG • e2 = e2,

a • e1 = e1,

a • e2 = e1 + e2.

From the above equalities, we have that the mapping

• : G× V → V

satisfies the group action axiom whereby eG •x = x for x ∈ V . We proceed to observe that the mapping
• as given above is indeed a group action, since the group action axiom whereby

g1 • (g2 • x) = (g1 ·G g2) • x

for g1, g2 ∈ G and x ∈ V is easily seen to hold:

(a ·G a) • e2 = a2 • e2
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= eG • e2
= e2

= e1 + (e1 + e2)

= a • e1 + a • e2
= a • (e1 + •e2)
= a • (a • e2) .

We thus find that the module V = {0, e1, e2, e1 + e2} has a very natural structure as a G-module.

Although we have a G-invariant submodule

W = LZ2{e1} = {0, e1} ≤G V

of V , V is not equal to W plus another G-invariant submodule.

In this case, something goes wrong with Maschke’s theorem. We’re not working over C in this case.

Working over C with respect to Maschke’s theorem is intuitively very useful.

Recall that a Hermitian inner product1 is such that if you reverse the order, you get the complex
conjugate.

[·, ·] is a G-invariant Hermitian inner product on V . So, we can construct an orthonomal basis B of V .

AB(g) will be a unitary matrix: A−1 = AT .

AB is called a unitary representation2.

Let V be finite dimensional. Write
V ∼= V1 ⊕ V2 ⊕ · · · ⊕ Vr

where Vi is irreducible for all i.

Now, let V be decomposed in the following manner.

V ∼= V1 ⊕ V1 ⊕ · · · ⊕ V1︸ ︷︷ ︸
m1

⊕

V2 ⊕ V2 ⊕ · · · ⊕ V2︸ ︷︷ ︸
m2

⊕

· · ·
Vk ⊕ Vk ⊕ · · · ⊕ Vk︸ ︷︷ ︸

mk

.

We want all bases to be essentially the same.

Every time we have a representation, it will “break down” in the manner suggested above.

Observe that given a morphism from V1 to V2, by Schur’s lemma, a morphism of this form must either
be trivial, or an isomorphism.

1See http://mathworld.wolfram.com/HermitianInnerProduct.html.
2See https://en.wikipedia.org/wiki/Unitary_representation.

2

http://mathworld.wolfram.com/HermitianInnerProduct.html
https://en.wikipedia.org/wiki/Unitary_representation


It is very important to choose essentially the same basis for each subspace of the form Vi.

For example, consider the isomorphic equivalence whereby

L {e1, e2} ∼= L {e1 + e2, e1 − e2},

letting B denote the basis {e1, e2}, and letting B′ = {e1 + e2, e1 − e2}. Compute the transition matrices
with respect to these bases:

B[id]B′ =
[
1 1
1 −1

]
B′ [id]B =

[
1
2

1
2

1
2
−1

2

]
.

V as given above is a module, but a representation is a map from the group to the corresponding group
of matrices.

Choose a basis carefully so that each copy of Vi has an isomorphic copy of that basis.

Smaller example: V = X(1) ⊕X(1) ⊕X(2).

In this case, let dim(X(1)) = 3 and dim(X(2)) = 4.

Also, let A(
1
1)(g) = A(

1
2)(g).
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Question 11.1. What is Com(A) = {T ∈ Matn×n(C) : TAB(g) = AB(g)T}?

If i 6= k, then T (
i
j)(

k
`) is a G-homomorphism from Vi to Vk. So, in this case, we have that T (

i
j)(

k
`) ≡ 0,

by Schur’s lemma.

If i = k, then T (
i
j)(

k
`) is a G-homomorphism from Vi to Vi. So, in this case, we have that T (

i
j)(

k
`) =

c · Iddi×di , with d1 = dim(X(1)) = 3 and d2 = dim(X(2)) = 4.

If T is in the commutator of A, what does this tell us? It shows that T has a very specific form.

In particular, if T is in Com(A), then T must be of the form

a 0 0 b 0 0 0 0 0 0
0 a 0 0 b 0 0 0 0 0
0 0 a 0 0 b 0 0 0 0
c 0 0 d 0 0 0 0 0 0
0 c 0 0 d 0 0 0 0 0
0 0 c 0 0 d 0 0 0 0
0 0 0 0 0 0 f 0 0 0
0 0 0 0 0 0 0 f 0 0
0 0 0 0 0 0 0 0 f 0
0 0 0 0 0 0 0 0 0 f


for a, b, c, d, f ∈ C.

Now observe that:
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deg(AB(g)) =
k∑

i=1

midi.

Recall that mi denotes the number of times the irreducible component Vi appears in the decomposition
of V , and dim(Vi) = di.

Recall that
V ∼= V ⊕m1

1 ⊕ V ⊕m2
2 ⊕ · · ·V ⊕mk

k ,

with dim(Vi) = di. We thus have that:

(i) deg(AB(g)) =
∑k

i=1midi;

(ii) Com(A) ∼= ⊕k
i=1Matmi×mi

(C)⊗ Iddi×di ; and

(iii) dim(Com(A)) =
∑k

i=1m
2
i .

It is natural to ask: What is the center of Com(A)?

If U ∈ Z(Com(A)), then U must be of the form:

a 0 0 0 0 0 0 0 0 0
0 a 0 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0 0
0 0 0 0 a 0 0 0 0 0
0 0 0 0 0 a 0 0 0 0
0 0 0 0 0 0 b 0 0 0
0 0 0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 0 b 0
0 0 0 0 0 0 0 0 0 b


for a, b ∈ C, because Z(Matr×r(C)) = CIdr×r.

We thus find that:

(iv) Z(Com(A)) = ⊕k
i=1CIddimi×dimi

; and

(v) dim(Z(Com(A))) = k.

Property (i) is clear because we chose the notation that way.

Property (ii) is less clear. It follows because

A(
i
j)T (

i
j)(

k
`) = T (

i
j)(

k
`)A(

k
`).

Kronecker product of the matrices −→ tensor product. Recall that:

A⊗B


a11B a12B · · · a1`B
a21B a22B · · · a2`B
...

... . . . ...
an1B an2B · · · an`B

 .
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It is clear that (ii) =⇒ (iii), if we choose an appropriate basis for Matmi×mi
(C).

It is clear that (ii)=⇒ (iv), because of the previous exercise which required proving that Z(Matn×n(C)) ∼=
CIdn×n.

It is clear that (iv) =⇒ (v).

11.2 Elementary character theory

Recall that we have discussed a correspondence between G-modules and G-representations:

G-module⇐⇒ G-representation

G-module: group acting on a vector space.

(G, V ) choose a basis AB : G→ GLn(C)
G-module =⇒ G-representation
G-set ⇐⇒ embedding in symmetric group on set

Remark 11.2. Intuitively, the invertible matrices are a much richer class of groups compared to Sn.

SLn(C) −→ condition for embedding?

Recall that Un(C) denotes the group of n× n unitary matrices. Recall that a complex square matrix U
is unitary if its conjugate transpose U∗ is also its inverse.

The character for a module V will be denoted χV , with

χV : G→ C,

and
χV (g) = tr(AB(g)),

for an arbitrary element g ∈ G. The above definition is independent of one’s choice of a basis B of V .
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The right-hand side of the above equation seems to depend on a basis, but the left-hand side does not
depend on any basis.

To show that the above definition does not depend upon a choice of a basis B, we make use of the
following identity:

tr(ABA−1) = tr(B).

This is a consequence of the formula whereby:

tr(AB) = tr(BA).

The matrix B[id]B′ is nonsingular. Now, observe that:

B[id]−1B′ = B′ [id]B
AB(g) = B[id]B′
AB′(g) = B′ [id]B.

Therefore,

tr(AB(g)) = tr
(
B[id]B′AB′(g)B[id]−1B′

)
= tr(AB′(g)).

This implies that χV is independent of the basis.

Choose a “good” basis so that AB : G→ Un×n(C). In this case, we have that:

χV (g) = χV (hgh−1)

= =

tr(AB(g)) = tr(AB(h)AB(g)AB(h−1))

Theorem 11.3. The character χV is constant on conjugacy classes of the corresponding group dom(χV ).

Remark 11.4. Observe that AB(h−1) = AB(h)
−1.

Proposition 11.5. If M ∼= N , then χM(g) = χN(g).

Amazing fact:

∀g χM(g) = χN(g) =⇒ M ∼= N.

Remark 11.6. The above result shows that we basically “just need the sum of the diagonals” when
dealing with representations. This gives us one number for each conjugacy class. Then you can tell if
these G-modules are isomorphic or not. This character-theoretic approach solves so many problems in
algebraic combinatorics.

Remark 11.7. One may be tempted to use the word “representation” casually in mathematics. Do not
do this. The word “representation” has a specific meaning in mathematics.

Remark 11.8. Representation theory has been an active research area since around the turn of the
20th century since Schur’s thesis was in 1905. That may not be the first reference on the subject, but
historically it does seem to solidify the place of representation theory as a well defined subject.
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