
Introduction to Rings

All rings in this note are commutative.

New rings from old
Polynomial rings R[x] or R[x1, x2, · · · , xn]
Matrix rings Matn×n(R)
Ring of fractions {(a, b) : a ∈ R, b ∈ D}
Group rings RG = {r1g1 + · · · rngn : ri ∈ R, gi ∈ G}
Quotient rings R/I, R ideal of R

Definition: Let R be a ring.

(1) A nonzero a of R is called a zero divisor if there is a nonzero element s ∈ R such that as = 0
or sa = 0.

(2) Assume R has an identity 1 6= 0. An element r of R is called a unit in R if there is some s ∈ R
such that rs = sr = 1.

(3) An element x ∈ R is called nilpotent if there is some m ∈ Z+ such that xm = 0.

(4) An element e ∈ R is called an idempotent if e2 = e.

Example:

• The ring Z of integers has only ±1 as its units.

• The ring Z/nZ = Zn, if n = r · s then r and s are zero divisors.
If gcd(a, n) = 1 then a is a unit of Zn.

• Z2[x]/(x2 + x+ 1) is a field with four elements.

1. Ring Homomorphisms and Quotient Rings

Theorem: There is a canonical projection, π : R → R/J , where J is an ideal of R. The map is a
surjective ring homomorphism with kernel J . Thus every ideal is the kernel of a ring homomorphism
and vice versa.

There are analogues of the isomorphism theorems.

R
π−−→R/J S ⊆ R/J

{J ⊆ K ⊆ R}
ideal

←→{K ⊆ R/J} π∗(S) = ∪
a+J∈S

(a+ J)

{J ⊆ S ⊆ R}
subring

←→{S ⊆ R/J}

Proposition: Let R and S be rings and let φ : R→ S be a homomorphism.

(1) ker(φ) is a subring of R. Furthermore, if α ∈ ker(φ) then rα and αr ∈ ker(φ) for every r ∈ R,
i.e., ker(φ) is closed under multiplication by elements from R.

(2) im(φ) is a subring of S, and im(φ) ∼= R/ker(φ).

Theorem: Let R be a ring.

(1) (The Second Isomorphism Theorem for Rings) Let A ⊆ R be a subring and let B be an ideal
of R. ThenA + B = {a + b|a ∈ A, b ∈ B} is a subring of R, A ∩ B is an ideal of A and
(A+B)/B ∼= A/(A ∩B).
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(2) (The Third Isomorphism Theorem for Rings) If I and J are ideals of R with I ⊆ J , then J/I
is an ideal of R/I and (R/I)/(J/I) ∼= R/J .

(3) (The Fourth or Lattice Isomorphism Theorem for Rings) Let J be an ideal of R. The corre-
sponding S ←→ S/J is an inclusion preserving bijection between the set of subrings S of R
that contain J and the set of subrings of R/J . Furthermore, A (a subring containing J) is an
ideal of R if and only if S/J is an idea of R/J .

2. Properties of Ideals

Proposition: Let R be a ring with identity 1.

(a) I = R if and only if I contains a unit.

(b) If R is commutative. Then R is a field if and only if its only ideals are 0 and R.

Sketch of a proof: u ∈ R =⇒ (u) = R =⇒ uv = 1

Ideal is similar to notion of a normal subgroup of a group in that quotient structure comes from cosets
of ideals.

Definition: Let J be any subset of the ring R. J ⊆ R is an ideal if

(1) J is a subgroup of (R,+)

(2) {ra : r ∈ R, a ∈ J} ⊆ J (left ideal)
{ar : r ∈ R, a ∈ J} ⊆ J (right ideal)
{rar′ : r, r′ ∈ R, a ∈ J} ⊆ J(two-sided if both left and right OR just ideal).

If J is an ideal of R, then R/J = {a+ J : a ∈ R} is a ring (a+ J = {a+ r : r ∈ J}).

(R/J,+R/J) is an abelian group (a+ J) +R/J (b+ J) = (a+ b) + J
(R/J, ·R/J) is well defined (a+R J) ·R/J (b+ J) = ab+R Jb+R aJ +R JJ = ab+ J

Lemma: A division ring has no non-trivial ideals. If a 6= 0 ∈ J then a−1 ∈ R ⇒ raa−1 ∈ J ⇒ r ∈
J ∀ r ∈ R.

Wedderburn’s little theorem: A finite division ring D is a field (i.e., is commutative).

Proofs generally require facts about cyclotomic polynomials.
Idea: Show that if D is a finite division ring with center Z then Z is a field and D is a v.s. over Z.
Use the class equation to show dimD over Z = 1 so D = Z.

Remark: Quaternions a+ bi+ cj + dk ∼=
{[y

z
z
y

]
: y, z ∈ C

}
are not ∼= RQ8.

The notion of ideals generated by subsets of a ring is analogous to that of subgroups generated by
subsets of a group. Since the intersection of any nonempty collection of ideals of R is also an ideal
and A = {a1, a2, · · · } is always contained in atleast one ideal (namely R), we have

(A) = ∩
I ideal
A⊆I

I,

i.e., (A) is the intersection of all ideals of R that contain the set A.

Definition: Let A be any subset of the ring R. Let RA denote the set of all finite sums of elements
of the form ra with r ∈ R and a ∈ A i.e.,

RA = {r1a1 + r2a2 + · · ·+ rnan|ri ∈ R, ai ∈ A,n ∈ Z+}
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the left ideal generated by R, similarly

AR = {a1r1 + a2r2 + · · ·+ anrn |ri ∈ R, ai ∈ A,n ∈ Z+}
right ideal generated by R and

RAR = {r1a1r′1 + r2a2r
′
2 + · · ·+ rnanr

′
n|ri, r′i ∈ R, ai ∈ A,n ∈ Z+}

(two-sided) ideal generated by R. If R commutative RA = AR = RAR = (A).

Definition: Let I be an ideal of R with an identity 1 6= 0.

(1) I is principal ideal if it is generated by a single element.

(2) I is finitely generated if it is generated by a finite set of elements.

(3) I 6= R is maximal ideal if the only ideals containing I are I and R.

(4) If R is commutative I is called prime ideal if I 6= R and if ∀a, b ∈ R and ab ∈ I implies that
either a ∈ I or b ∈ I.

Proposition: If R has an identity, every ideal is contained (at least one) in a maximal ideal.

Sketch of a proof: Show if S is the set of ideals containing an ideal I and C a chain (ordered) by
inclusion

J = ∪
A∈C

A

is a maximal ideal.

Proposition: If R is commutative, M is maximal ideal of R if and only if R/M is a field.

Sketch of a proof: By the fourth (lattice) isomorphism theorem and fact that only ideals of a field
are 0 and R.

Proposition: Assume R is commutative. P is a prime ideal if and only if R/P is an integral domain.

Sketch of a proof: translate definition of prime ideal into language of quotients.

Proposition: Assume R is commutative. Every maximal ideal of R is a prime ideal.

Sketch of a proof: M maximal =⇒ R/M is a field and integral domain.


