Introduction to Rings

All rings in this note are commutative.

New rings from old

Polynomial rings R[x] or R[z1, 22, -, Tp]

Matrix rings Mat,, «n (R)

Ring of fractions {(a,b) : a € R,b € D}

Group rings RG = {rig1 + -+ rngn : 5 € R, g; € G}
Quotient rings R/I, R ideal of R

Definition: Let R be a ring.

(1) A nonzero a of R is called a zero divisor if there is a nonzero element s € R such that as =0
or sa = 0.

(2) Assume R has an identity 1 # 0. An element r of R is called a unit in R if there is some s € R
such that rs = sr = 1.

(3) An element x € R is called nilpotent if there is some m € Z* such that 2™ = 0.

(4) An element e € R is called an idempotent if €? = e.

Example:
e The ring Z of integers has only £1 as its units.

e The ring Z/n%Z = Zy, if n = r - s then r and s are zero divisors.
If ged(a,n) = 1 then a is a unit of Z,.

o Zs[x]/(x? + x + 1) is a field with four elements.

1. RING HOMOMORPHISMS AND QUOTIENT RINGS

Theorem: There is a canonical projection, 7 : R — R/J, where J is an ideal of R. The map is a
surjective ring homomorphism with kernel J. Thus every ideal is the kernel of a ring homomorphism
and vice versa.

There are analogues of the isomorphism theorems.

R 5R/J SCR/J
{J Qii(alg R} «+—{K C R/J} ™(8) = Q+LJJeS(a +J)
{JCSCR}y«+—{SCR/J}

subring

Proposition: Let R and S be rings and let ¢ : R — S be a homomorphism.

(1) ker(¢) is a subring of R. Furthermore, if a € ker(¢) then ra and ar € ker(¢) for every r € R,
i.e., ker(¢) is closed under multiplication by elements from R.

(2) im(¢) is a subring of S, and im(¢) = R/ker(¢).

Theorem: Let R be a ring.

(1) (The Second Isomorphism Theorem for Rings) Let A C R be a subring and let B be an ideal
of R. ThenA + B = {a + bla € A,b € B} is a subring of R, AN B is an ideal of A and
(A+B)/B=A/(ANB).
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(2) (The Third Isomorphism Theorem for Rings) If I and J are ideals of R with I C J, then J/I
is an ideal of R/I and (R/I)/(J/I) = R/J.

(3) (The Fourth or Lattice Isomorphism Theorem for Rings) Let J be an ideal of R. The corre-
sponding S <— S/J is an inclusion preserving bijection between the set of subrings S of R
that contain J and the set of subrings of R/J. Furthermore, A (a subring containing J) is an
ideal of R if and only if S/J is an idea of R/J.

2. PROPERTIES OF IDEALS

Proposition: Let R be a ring with identity 1.
(a) I = R if and only if I contains a unit.
(b) If R is commutative. Then R is a field if and only if its only ideals are 0 and R.
Sketch of a proof: e R— (u)=R=—uv=1

Ideal is similar to notion of a normal subgroup of a group in that quotient structure comes from cosets
of ideals.

Definition: Let J be any subset of the ring R. J C R is an ideal if
(1) J is a subgroup of (R,+)
(2) {ra:r € Ryac J} CJ (left ideal)

{ar :r € R,a € J} C J (right ideal)
{rar’ : v, € R,a € J} C J(two-sided if both left and right OR just ideal).

If J is an ideal of R, then R/J ={a+J:a€ R} isaring (a+J={a+7r:r e J}).

(R/J,+Rys) is an abelian group (a+J)+r/y (b+J)=(a+b)+J
(R/J, gry) is well defined (a+rJ) gy (b+J)=ab+rJb+gpal +rJJ =ab+J

Lemma: A division ring has no non-trivial ideals. If a 20 € J then a™' € R = raa™' € J = r €
JVreR.

Wedderburn’s little theorem: A finite division ring D is a field (i.e., is commutative).

Proofs generally require facts about cyclotomic polynomials.
Idea: Show that if D is a finite division ring with center Z then Z is a field and D is a v.s. over Z.
Use the class equation to show dimD over Z =1so D = Z.

Remark: Quaternions a + bi 4+ ¢j + dk = {[% ] DY,z € C} are not = R(Q)g.

z
y
The notion of ideals generated by subsets of a ring is analogous to that of subgroups generated by
subsets of a group. Since the intersection of any nonempty collection of ideals of R is also an ideal
and A = {a1,aq, -} is always contained in atleast one ideal (namely R), we have

A= n I

(4) I ideal ’

ACT

i.e., (A) is the intersection of all ideals of R that contain the set A.

Definition: Let A be any subset of the ring R. Let RA denote the set of all finite sums of elements
of the form ra with r € R and a € A i.e.,

RA = {riay +roag + - -+ + rpan|r; € R,a; € A,n € Z"}



the left ideal generated by R, similarly
AR = {air1 +agro + -+ +apry |ri € Rya; € A,in € Z7}
right ideal generated by R and
RAR = {ria17'y + roagr’s + - - + rpanr’n|ri,v’s € Rya; € A,n € 77}
(two-sided) ideal generated by R. If R commutative RA = AR = RAR = (A).

Definition: Let I be an ideal of R with an identity 1 # 0.
(1) I is principal ideal if it is generated by a single element.
2) 1 is finitely generated if it is generated by a finite set of elements.

(2)
(3) I # R is mazimal ideal if the only ideals containing I are I and R.
(4)

4) If R is commutative [ is called prime ideal if I # R and if Va,b € R and ab € I implies that
eithera € I orbel.

Proposition: If R has an identity, every ideal is contained (at least one) in a maximal ideal.

Sketch of a proof: Show if S is the set of ideals containing an ideal I and C a chain (ordered) by
inclusion

J=UA
AeC

is a maximal ideal.

Proposition: If R is commutative, M is maximal ideal of R if and only if R/M is a field.

Sketch of a proof: By the fourth (lattice) isomorphism theorem and fact that only ideals of a field
are 0 and R.

Proposition: Assume R is commutative. P is a prime ideal if and only if R/P is an integral domain.

Sketch of a proof: translate definition of prime ideal into language of quotients.

Proposition: Assume R is commutative. Every maximal ideal of R is a prime ideal.

Sketch of a proof: M maximal = R/M is a field and integral domain.



