
Polynomial Rings

1. Definitions and Basic Properties

For convenience, the ring will always be a commutative ring with identity.

Basic Properties
The polynomial ring R[x] in the indeterminate x with coefficients from R is the set of all formal
sums anx

n + an−1x
n−1 + · · ·+ a1x+ a0 with n ≥ 0 and each ai ∈ R.

Addition of polynomials is componentwise:
n∑

i=0

aix
i +

n∑
i=0

bix
i =

n∑
i=0

(ai + bi)x
i.

Multiplication is performed by first defining (axi)(bxj) = abxi+j and then extending to all
polynomials by the distributive laws so that in general(

n∑
i=0

aix
i

)
×

(
m∑
i=0

bix
i

)
=

n+m∑
k=0

(
k∑

i=0

aibk−i

)
xk.

In this way R[x] is a commutative ring with identity (the identity 1 from R) in which we identify
R with the subring of constant polynomials.

Proposition 1: Let R be an integral domain. Then

(1) degree p(x)q(x) = degree p(x) + degree q(x) if p(x), q(x) are nonzero

(2) the units of R[x] are just the units of R

(3) R[x] is an integral domain.

Proof :

1. If R has no zero divisors then neither does R[x]; if p(x) and q(x) are polyno-
mials with leading terms anx

n and bmx
m, respectively, then the leading term

of p(x)q(x) is anbmx
n+m, and anbm 6= 0. (This also proves (3)).

2. If p(x) is a unit, say p(x)q(x) = 1 in R[x], then degree p(x) + degree q(x) = 0,
so both p(x) and q(x) are elements of R, hence are units in R since their product
is 1.

3. Since R is an integral domain, it is in particular a commutative ring with iden-
tity. From the definition of multiplication in R[x], it follows very easily that
R[x] is also a commutative with identity 1R[x] = 1R. By proof of induction
on degree n you can show that the product of nonzero polynomials in R[x] is
nonzero. Therefore, R[x] is an integral domain.

Proposition 2: Let I be an ideal of ring R and let (I) = I[x] denote the ideal of R[x] generated
by I. Then

R[x]/(I) ∼= (R/I)[x].

In particular, if I is a prime ideal of R then (I) is a prime ideal of R[x].

Proof : There is a natural map ϕ : R[x]→ (R/I)[x] given be reducing each of the coefficients
of a polynomial modulo I. Show that ϕ is a ring homomorphism, and ker ϕ = I[x] = (I).
By Proposition 1, I is a prime ideal in R→ R/I and (R/I)[X] are integral domains.
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The next definition, is one we looked at in class last week, which is the description of the natural
extension to polynomial rings in several variables.
Definition 3: The polynomial ring in the variables x1, x2, ..., xn with coefficients in R, denoted

R[x1, x2, ..., xn] = R[x1, x2, ..., xn−1][xn]

Example 4:

Let p(x, y, z) = 2x2y − 3xy3z + 4y2z5 and q(x, y, z) = 7x2 + 5x2y3z4 − 3x2z3 be polynomials
in Z[x, y, z].
Note: The polynomial ring Z[x, y, z] in three variables x, y and z with integers coefficients
consists of all finite sums of monomial terms of the form axiyjzk (of degree i+ j + k).

sage: R1 = QQ[’x,y,z’]

sage: (x,y,z) = R1.gens()

sage: px = 2*x^2*y-3*x*y^3*z+4*y^2*z^5;

sage: qx = 7*x^2+5*x^2*y^3*z^4-3*x^2*z^3;

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z].

sage: R2 = QQ[’y,z’][’x’]

sage: R2(px)

(2*y)*x^2 - (3*y^3*z)*x + 4*y^2*z^5

sage: R2(qx)

(5*y^3*z^4 - 3*z^3 + 7)*x^2

(b) Find the degree of p and q.

sage: px.degree()

7

sage: qx.degree()

9

(c) Find the degree of p and q in each of the three variables x, y and z.

sage: px.exponents()

[(0, 2, 5), (1, 3, 1), (2, 1, 0)]

sage: qx.exponents()

[(2, 3, 4), (2, 0, 3), (2, 0, 0)]

(d) Compute pq and find the degree of pq in each of the three variables x, y and z.

sage: rx = px*qx; rx

20*x^2*y^5*z^9 - 15*x^3*y^6*z^5 + 10*x^4*y^4*z^4 - 12*x^2*y^2*z^8 +

9*x^3*y^3*z^4 + 28*x^2*y^2*z^5 - 6*x^4*y*z^3 - 21*x^3*y^3*z + 14*x^4*y

sage: rx.degree()

16

sage: rx.exponents()

[(2, 5, 9), (3, 6, 5), (4, 4, 4), (2, 2, 8), (3, 3, 4), (2, 2, 5),

(4, 1, 3), (3, 3, 1), (4, 1, 0)]

(e) Write pq as a polynomial in the variable z with coefficients in Z[x, y].

sage: R3 = QQ[’x,y’][’z’]

sage: R3(rx)

20*x^2*y^5*z^9 - 12*x^2*y^2*z^8 + (-15*x^3*y^6 + 28*x^2*y^2)*z^5 +

(10*x^4*y^4 + 9*x^3*y^3)*z^4 - 6*x^4*y*z^3 - 21*x^3*y^3*z + 14*x^4*y
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2. Polynomial Rings over Fields I

Theorem 5: (Division Algorithm) Let F be a field. The polynomial F [x] is a Euclidean
Domain. Specifically, if a(x) and b(x) are two polynomials in F [x] with b(x) nonzero, then
there are unique q(x) and r(x) in F [x] such that

a(x) = q(x)b(x) + r(x) with r(x) = 0 or degree r(x) < degree b(x).

Proof : If a(x) is the zero polynomial then take q(x) = r(x) = 0. We may therefore assume
a(x) 6= 0 and prove the existence of q(x) and r(x) by induction on n = degree a(x).
As for the uniqueness, suppose q1(x) and r1(x) also satisfied the conditions of the theorem.

a(x)− q(x)b(x) < m and a(x)− q1(x)b(x) < m→ b(q(x)− q1(x)) < m

hence q(x)− q1(x) must be 0, that is, q(x) = q1(x)⇒ r(x) = r1(x).

Example 6:

Determine the greatest common divisor of a(x) = x3 + 1 and b(x) = x2 + 2x+ 1 in Q[x].

x3 + 1 = (x2 + 2x+ 1)(Ax+B) + Cx+D

= Ax3 + (2A+B)x2 + (A+ 2B + C)x+ (B +D)

A = 1, B = −2, C = 3, D = 3

x3 + 1 =(x2 + 2x+ 1)(x− 2) + 3(x+ 1)

x2 + 2x+ 1 =(x+ 1)(x+ 1) + 0

Thus, gcd(x3 + 1, x2 + 2x+ 1) = x+ 1.

Definition 7: Principal Ideal Domain (PID)
A principal ideal domain is an integral domain R in which every ideal has the form

(a) = {ra|r ∈ R}
for some a in R.

Definition 8: Unique Factorization Domain (UFD)
An integral domain D is a unique factorization domain if

(1) every nonzero element of D that is not a unit can be written as a product of irreducibles
of D; and

(2) the factorization into irreducibles is unique up to associates and the order in which the
factors appear.

Exercise 9: Show that if F is a field, then F [x] is a Principal Ideal Domain and a Unique
Factorization Domain.

Corollary 10: If R is any commutative ring such that the polynomial ring R[x] is a Principal
Ideal Domain, then R is necessarily a field.

Proof : Assume R[x] is a Principal Ideal Domain. Since R is a subring of R[x] then R must
be an integral domain (recall that R[x] has an identity if and only if R does). The ideal (x)
is a nonzero prime ideal in R[x] because R[x]/(x) is isomorphic to the integral domain R.
(x) is a maximal ideal, (since every nonzero prime ideal in a Principal Ideal Domain is a
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maximal ideal), hence the quotient R is a field (since the ideal (x) is a maximal ideal if and
only if the quotient ring R is a field).

Example 11:

The ring Z of integers is a Principal Ideal Domain, but the ring Z[x] is not a Principal Ideal
Domain, since (2, x) is not principal in this ring.

Proof : The ideal (p, x), where p ∈ Z is any prime, is a non-principal ideal (the only
divisor of both p and x is 1). Suppose (x, 2)(p(x)), where p(x) ∈ Z[x].
If 2 ∈ (x, 2), then p(x) = c, where c ∈ {−2, 2}. Thus, (x, 2) = (p(x)) = (c), c ∈ {−2, 2}.
Now for x ∈ (x, 2), there exists h(x) ∈ Z[x] such that x = h(x)c, where h(x) = ax, a ∈ Z.
Therefore, x = h(x)c = axc, where a 6= 0 and c 6= 0. Then 1 = ac, c ∈ {−2, 2}. So c = 2
and a = 1

2
or c = −2 and a = −1

2
but a = ±1

2
/∈ Z then h(x) /∈ Z, contradiction.

Thus, (x, 2) cannot be generated by a single polynomial p(x), and Z[x] is not a principal
ideal domain.

3. Polynomial Rings that are Unique Factorization Domains

Proposition 12: Let R be a Unique Factorization Domain. Suppose that g and h are elements
of R[x] and let f(x) = g(x)h(x). Then the content of f is equal to the content of g times the
content of h.

Proof : It is clear that the content of g divides the content of f . Therefore we may assume
that the content of g and h is one, and we only have to prove that the same is true for f .
However, let’s assume this not true. Since R is a Unique Factorization Domain, it follows
that there is a prime p that divides the content of f . We may write

g(x) = anx
n + an−1x

n−1 + · · ·+ a0 and h(x) = bnx
n + bn−1x

n−1 + · · ·+ b0.

As the content of g is one, at least one coefficient of g is not divisible by p. Let i be the first
such, so that p divides ak, for k < i whilst p does not divide ai. Similarly pick j so that p
divides bk, for k < j, whilst p does not divide bj.
Consider the coefficient of xi+j in f . This is equal to

a0bi+j + a1bi+j−1 + · · ·+ ai−1bj + 1 + aibj + ai+1bj+1 + · · ·+ ai+jb0.

Note that p divides every term of this sum, except the middle one aibj. Thus p does not
divide the coefficient of xi+j . But this contradicts the definition of the content.

Proposition 13: (Gauss’ Lemma) Let R be a Unique Factorization Domain with field of
fractions F and let p(x) ∈ R[x]. If p(x) is reducible in F [x] then p(x) is reducible in R[x]. More
precisely, if p(x) = A(x)B(x) for some non-constant polynomials A(x), B(x) ∈ F [x], then there
are nonzero elements r, s ∈ F such that rA(x) = a(x) and sB(x) = b(x) both lie in R[x] and
p(x) = a(x)b(x) is a factorization in R[x].

Proof : The coefficients of the polynomials on the right hand side of the equation p(x) =
A(x)B(x) are elements in the field F , hence are quotients of elements from the Unique
Factorization Domains R. Multiplying through by a common denominator for all these
coefficients, we obtain

dp(x) = a′(x)b′(x),

where now a′(x) and b′(x) are elements of R[x] and d in a nonzero element of R. Now write

a′(x) = ra(x) and b′(x) = sb(x).
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We get

dp(x) = rsa(x)b(x).

By the proposition above, d divides rs, rs = dγ, where γ ∈ R. Thus, replacing a(x) with
γa(x), we have

p(x) = a(x)b(x).

Example 14:

Prove that if f(x) and g(x) are polynomials with rational coefficients whose product f(x)g(x)
has integer coefficients, then the product of any coefficient of g(x) with any coefficient of
f(x) is an integer.

Note that f(x)g(x) has integer coefficients, Z[x], and factors with rational coefficients,
Q[x]. By Gauss’ Lemma, there exists r, s ∈ Q such that rf, sg ∈ Z[x] and (rf)(sg) = fg.
Since Q is an integral domain, in fact rs = 1. Let fi and gi denote the coefficients of f
and g, respectively; we have rfi ∈ Z and r−1gi ∈ Z, so that figj ∈ Z for all i and j.

Exercise 15: Prove that R is a Unique Factorization Domain if and only if R[x] is a Unique
Factorization Domain.

Corollary 16: If R is a Unique Factorization Domain, then a polynomial ring in any number
of variables with coefficients in R is also a Unique Factorization Domain.

Proof : For finitely many variables, this follows by induction from the theorem (exercise 14)
above, since a polynomial ring in n variables can be consdered as a polynomial ring gin one
variable with coefficients in a polynomial ring in n − 1 variables. The general case follows
from the definition of a polynomial ring in an arbitrary number of variables as the union of
polynomial rings in finitely many variables.

Example 17:

• Z[x], Z[x, y], etc. are Unique Factorization Domains. The ring Z[x] gives an example
of a Unique Factorization Domain that is not a Principal Ideal Domain.

• Q[x], Q[x, y], etc. are Unique Factorization Domains.

4. Irreducibility Criteria

Proposition 18:

(a) Let F be a field and let p(x) ∈ F [x]. Then p(x) has a factor of degree one if and only if
p(x) has a root in F , that is, there is an α ∈ F with p(α) = 0.

Proof : If p(x) has a factor of degree one, then since F is a field, we may assume the factor
is monic, i.e., is of the form (x − α) for some α ∈ F . But then p(α) = 0. Conversely,
suppose p(α) = 0. By the Division Algorithm in F [x] we amy write

p(x) = q(x)(x− α) + r

where r is a constant. Since p(α) = 0, r must be 0, hence p(x) has (x− α) as a factor.
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(b) A polynomial of degree two or three over a field F is reducible if and only if it has a root
in F .

Proof : This follows immediately from the previous proposition, since a polynomial of
degree two or three is reducible if and only if it has at least one linear factor.

(c) Let p(x) = anx
n +an−1x

n−1 + · · ·+a0 be a polynomial of degree n with integer coefficients.
If r/s ∈ Q is in lowest terms (i.e., r and s are relatively prime integers) and r/s is a root
of p(x), then r divides the constant term and s divides the leading coefficient of p(x): r|a0
and s|an. In particular, if p(x) is a monic polynomial with integer coefficients and p(d) 6= 0
for all integers d dividing the constant term of p(x), then p(x) has no roots in Q.

Proof : By hypothesis, p(r/s) = 0 = an(r/s)n + an−1(r/s)
n−1 + · · · + 0. Multiplying

through by sn gives

0 = anr
n + an−1r

n−1s+ · · ·+ a0s
n.

Thus anr
n = s(−an−1rn−1 − · · · − a0sn−1), so s divides anr

n. By assumption, s is rela-
tively prime to r and it follows that s | an. Similarly, solving the equation for a0s

n shows
that r | a0. The last assertion of the proposition follows from the previous ones.

Example 19:

The polynomial p(x) = x2 + x + 1 is irreducible in Z/2Z[x] since it does not have a root in
Z/2Z[x]: 02 + 0 + 1 = 1 and 12 + 1 + 1 = 1.

Proposition 20: Let I be a proper ideal in the integral domain R and let p(x) be a non-
constant monic polynomial in R[x]. If the image of p(x) in (R/I)[x] can’t be factored in
(R/I)[x] into two polynomials of smaller degree, then p(x) is irreducible in R[x].

Proof : Suppose p(x) cannot be factored in (R/I)[x] but that p(x) is reducible in R[x].
This means there are monic, non-constant polynomials a(x) and b(x) in R[x] such that
p(x) = a(x)b(x). By Proposition 2, reducing the coefficients modulo I gives a factorization
in (R/I)[x] with non-constant factors, a contradiction.

Example 21:

Consider the polynomial p(x) = x2+x+1 in Z[x]. Reducing modulo 2, we see from Example
19 above that p(x) is irreducible in Z[x]. Similarly, x3 + x+ 1 is irreducible in Z[x] because
it is irreducible in Z[x]/2Z[x].

Exercise 22: Let f(x) ∈ Z[x]. Prove that if f(x) is reducible over Q, then it is reducible over Z.

Corollary 23: (Eisenstein’s Criterion for Z[x]) Let p be a prime in Z and let f(x) = xn +
an−1x

n−1 + · · · + a1x + a0 ∈ Z[x], n ≥ 1. Suppose p divides ai for all i ∈ {0, 1, · · ·n − 1} but
that p2 does not divide a0. Then f(x) is irreducible in both Z[x] and Q[x].

Proof : Suppose f(x) is reducible over Z, then there exist elements g(x) and h(x) in Z[x]
such that f(x) = g(x)h(x), 1 ≤ deg g(x), and 1 ≤ deg h(x) < n. Say g(x) = brx

r + · · ·+ b0
and h(x) = csx

s + · · · + c0. Then, since p | a0, p2 - a0, and a0 = b0c0, it follows that
p divides one of b0 and c0 but not the other. Let us say p | b0 and p - c0. Also, since
p | an = brcs, we know that p | br. So, there is a least integer t such that p - bt. Now,
consider at = btc0 + bt−1c1 + · · · + b0ct. By assumption, p divides at and, by choice of t,
every summand on the right after the first one is divisible by p. Clearly, this forces p to
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divide btc0 as well. This is impossible, however, since p is prime and p divides neither bt nor c0.

Example 24:

Prove that the polynomial x4 − 4x3 + 6 is irreducible in Z[x].

The polynomial x4−4x3 +6 is irreducible in Z[x] because 2 - 1 and 4 - 6 but 2 does divide
-4, 0, and 6.

Example 25:

Let p be a prime, the pth cyclotomic polynomial

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

is irreducible over Z.

Let f(x) = Φp(x+ 1) = (x+1)p−1
(x+1)−1 = xp−1 +

(
p
1

)
xp−2 +

(
p
2

)
xp−3 + · · ·+

(
p
1

)
. Then, since every

coefficient except that of xp−1 is divisible by p and the constant term is not divisible by
p2, by Eisenstein’s Criterion, f(x) is irreducible over Z. So, if Φp(x) = g(x)h(x) were a
nontrivial factorization of Φp(x) over Z, then f(x) = Φp(x+ 1) = g(x+ 1) ·h(x+ 1) would
be a nontrivial factorization of f(x) over Z. Since this is impossible, we conclude that
Φp(x) is irreducible over Z.
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Definition:

(1) A commutative ring with identity 1 6= 0 is called an integral domain if it has no zero
divisors.

(2) An ideal M in an arbitrary ring S is called a maximal ideal if M 6= S and the only
ideals containing M are M and S.

(3) Assume R is commutative. An ideal P is called a prime ideal if P 6= R and whenever
the product ab of two elements a, b ∈ R is an element of P , then at least one of a and b
is an element of P .

(4) A principal ideal is an ideal I in a ring R that is generated by a single element a of R
through multiplication by every element of R, (a) = {ra|r ∈ R}.

Propsition:

(1) Every nonzero prime ideal in a Principal Ideal Domain is a maximal ideal.

Proof : Let (p) be a nonzero prime ideal in the Principal Ideal Domain R and let
I = (m) be any ideal containing (p). We must show that I = (p) or I = R. Now
p ∈ (m) so p = rm for some r ∈ R. Since (p) is a prime ideal and rm ∈ (p), either r
or m must lie in (p). If m ∈ (p) then (p) = (m) = I. If, on the other hand, r ∈ (p)
write r = ps. In this case p = rm = psm, so sm = 1 (recall that R is an integral
domain) and m is a unit so I = R.

(2) Assume R is commutative. The ideal M is a maximal ideal if and only if the quotient
ring R/M is a field.

Proof : There are two things to be shown here.
⇒ If M is a maximal ideal of R, then every non-zero element of R/M is a unit. A
strategy for doing this is as follows: if a ∈ R does not belong to M (so a + M is
not the zero element in R/M), then the fact that M is maximal as an ideal of R
means that the only ideal of R that contains both M and the element a is R itself.
In particular the only ideal of R that contains both M and the element a contains
the identity element of R.
⇐ If R/M is a field (i.e. if every non-zero element of R/M is a unit), then M is a
maximal ideal of R. A useful strategy for doing this is to suppose that I is an ideal
of R properly containing M , and try to show that I must be equal to R.


