
Polynomial Rings

All rings in this note are commutative.

Example:

f1 = y2 − 3x+ y + 5

f2 = −y2 + 2x+ y − 1

g = −4y2 + x+ 18y + 24 ∈ L{f1, f2}
g = af1 + bf2 [g]{f1,f2}

a− b = −4

−3a+ 2b = 1

a+ b = 18 [
1 −1
−3 2

]−1 [ −4
1

]
=

[
a
b

]
=⇒ a = 7, b = 11

1. Chinese Remainder Theorem

Definition: The ideal A and B of ring R are said to be comaximal if A + B = R (means relatively
prime).

Theorem: (Chinese Remainder Theorem) Let A1, A2, · · · , Ak be ideals in R. The map

R −→ R/A1 ×R/A2 × · · · ×R/Ak defined by r 7−→ (r +A1, r +A2, · · · , r +Ak)

is a ring homomorphism with kernel A1 ∩A2 ∩ · · · ∩Ak. If for each i, j ∈ {1, 2, · · · , k} with i 6= j the
ideals Ai and Aj are comaximal, then this map is surjective and A1 ∩A2 ∩ · · · ∩Ak = A1A2 · · ·Ak, so

R/(A1A2 · · ·Ak) = R/(A1 ∩A2 ∩ · · · ∩Ak) ∼= R/A1 ×R/A2 × · · · ×R/Ak.

Sketch of proof: If A1 and A2 are pairwise comaximal then

A1 ∩A2 = A1 ·A2

A1 ∩A2 ⊆ A1 ·A2

A1 ·A2 ⊆ A1 ∩A2 (clear for P.I.D.)

(a1r1 + a2r2 + · · ·+ anrn)(b1r
′
1 + b2r

′
2 + · · ·+ bnr

′
n)

n∑
i=1

m∑
j=1

airibjr
′
j ∈ A1 and A2

A1 +A2 = R

x ∈ A1, y ∈ A2 such that x+ y = 1

c ∈ A1 ∩A2 then c = c · 1 = cx+ cy ∈ A1A2

Example:

x ∼= 2(mod 3)

x ∼= 3(mod 5)

x ∼= 2(mod 7)

R = Z A1 = (3) A2 = (5) A3 = (7) A1 ∩A2 ∩A3 = (105)

Example:

(10) + (13) = (gcd(10, 13)) = (1) = Z (10) ∩ (13) = (130) = (10) · (13)
1
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comaximal

−5 · 10 + 4 · 13 = 2

−9 · 10 + 7 · 13 = 1

(10) + (13) = (gcd(10, 13)) = (1) = Z (10) ∩ (13) = (130) = (10) · (13)

not comaximal because the gcd is not 1

(x3 + 1) + (x2 + 2x+ 1) = (x+ 1) (x3 + 1) ∩ (x2 + 2x+ 1) = (x4 + x3 + x+ 1)

not comaximal

Generalization says: If Ai and Aj are comaximal then A1 ∩A2 ∩ · · · ∩Ak = A1A2 · · ·Ak.

2. Polynomial Rings over Fields

Corollary: If F is a field, then F [x] is a Principle Ideal Domain and is a Unique Factorization Domain.

The quotient F [x]/I always looks like I = (p(x)), where F is a field and p(x) is a polynomial in F [x].

Proposition: Let p(x) be a nonconstant element of F [x] and let

p(x) = f1(x)a1f2(x)a2 · · · fk(x)ak

be its factorization into irreducibles, where the fi(x) are distinct. Then the following isomorphism of
rings:

F [x]/(p(x)) ∼= F [x]/(f1(x)a1)× F [x]/(f2(x)a2)× · · · × F [x]/(fk(x)ak).

F [x]/(p(x)) has as unique elements of quotient ring a0 + a1x+ · · ·+ an−1x
n−1 + (p(x)).

Example:

F [x]/(x2 + 1) has elements of the form a+ bx+ (x2 + 1)

(a+ bx+ (x2 + 1))(c+ dx+ (x2 + 1)) = ac+ bcx+ adx+ bdx2 + (x2 + 1)

= ac+ bcx+ adx− bd+ (x2 + 1)

bdx2 = bdx2 + bd− bd = bd(x2 + 1) + (−bd)

r − s ∈ I then r ≡ s in R/I =⇒ r − s ≡ 0 in R/I.

3. Polynomials in Several Variables over a Field

In general, the polynomial ring F [x1, · · · , xn] is a Unique Factorization Domain however, it is not a
Principle Ideal Domain unless n = 1.

Example:

If F [x, y](x, y4) is not generated by a single polynomial

2x+ 3y4 ∈ (x, y4)
x2 + 3y5 ∈
there is no single polynomial which divides both 2x+ 3y4 and x2 + 3y5.

Theorem: (Hilbert’s basis theorem) If R is a Noetherian ring then the polynomial ring R[x] is also
Noetherian, where R is Noetherian means its every ideal is finitely generated.

Example:

F [x1, x2, · · · ] is not Noetherian because I = (x1, x2, · · · ) needs to be generated by all xi.
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In F [x1, x2, · · · , xn] the elements look like
∑
α

c~α~x
~α = p(~x) where x~α = xα1

1 xα2
2 · · ·xαn

n and c~α ∈ F

degree of a polynomial p(~x) = maxαc
n∑
i=1

αi.

F [x1, x2, · · · , xn] is the ring of formal power series where we allow infinite sums.


