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Modules Over A Ring

For the purpose of this presentation we will be considering a commutative ring A with
unity (1a

Modules

Definition: M is an A-module is an abelian group w.r.t. addition and with a mapping
2: Ax M — M such that @ (a,x) is ax that satisfies the following conditions V a,b € A and
Vxy€EM:

(1Dakx+y)=ax+ay

(2) (@a+b)x =ax + bx
(3) (ab)x = a(bx)

(4)1ax=x

Definition: M, N modules, f: M—N is an A-module homomorphism if it satisfies Va € A
and V x,y EM:

(D f(x+y) = f(x) + f(y)

(2) f(ax) = af(x)

Definition: M, N modules. Homa(M,N) is the set of A-module homomorphisms from M to N.
Submodules

Definition: M'EM is a submodule if it is a subgroup of M and it is closed under
multiplication. Thatis, V a € A, and V x €M then ax € M.

Prop . (The Submodule Criterion) Let A be a ring and let M be an A-module.
A subset M’ of M is a submodule of M if and only if

()M # 0@,and

(2)x+aye M’ foralla€Aandforallx,y € M".



Proof

——> M’ is a submodule, then 0 € M’ so N # @. Also M’ is closed under addition

and is sent to itself under the action of elements of A.

<—— Assume (1) and (2). Leta = - 1 and apply the subgroup criterion (in additive form)
to see that M’ is a subgroup of M. In particular, 0 € M’. Now let x = 0 and apply hypothesis
(2) to see that M’ is sent to itself under the action of R.

Quotient Modules

Definition: M a module and M'E M a submodule then M/M’ is an A-module if we define an
action, a(x + M") = ax + M’ for everya € Aand (x + M)e M/M".

Prop. There is a mapping ®:M —»M/M’ such that ®(x) = x + M’. [tis an A-module
homomorphism and ker(®)=M".

Proof.
e M abelian additive group—/—> M/M'’ is an additive abelian group

e Istheaction ofa€A onx+ M’ well defined? Letx + M'=y +M'=——> x-yeM’
and M’ submodule=—> a(x - y) e M'=——> ax-ay E \'——> ax+ M’ =ay + M\'—>
action is well defined.

e (Check the axioms of the module. For example, Val, a2€ A and x + M'e M/M’ then
(a1az2)(x + M’) = (a1azx) + M’= a1 (azx + M")= a1 (az(x + M")). This proves the 3rd
condition in the definition of an A-module

e @O:M—> M/M’is the projection of a an abelian group onto an abelian group.
Every subgroup of an abelian group is normal =—> ker(®)= M’ by exercise 11
that we did in the beginning of the term.

o Px+y)=x+y+M=x+M+y+M =>d(x)+ P(y) and
d(ax) =ax+ M =a(x+ M) = a P(x) =—> P is an A- module homomorphism

More Definitions

For f: M— N an A-module homomorphism then the kernel of f is the set
Ker(f) = {xeM | f(x) = 0}
The kernel of fis a submodule of M. The image of f is the set

Im(f)=f(M)



The image of f is a submodule of N. The cokernel of f is the set

Coker(f) = N/Im(f)

Exact Sequences of Modules

A sequence of modules and module homomorphisms
fi fi+1
™ > Mj g —> Mi— Mj1—> ...
is called exact at M;if Im(f;) = Ker(fi+1).
Equivalently (i) gof =0
(i) V xi €M, if fi+1(xi) = 0 then 3x;.1€ Mi.1 s.t. xi = fi(xi-1)

If the above sequence has an infinite amount of modules and module homomorphisms
then it is a long exact sequence.

Simple examples of exact sequences

f
0 — M’ —» M s exact at M’ iff Ker(f)=Im(0—> M")= 0. This implies that fis a
monomorphism(injective).

g

M—> M”— 0 is exact at M” iff Im(g)=Ker(M"— 0)= M”. This implies that g is
an epimorphism(surjective).

A short exact sequence is of the form
f g
0O— M — M —> M"—> 0

An s.e.sis exactat M’, M, M”, fis injective, and g is surjective.

Exact Functors

A functor is a mapping between categories (in this case A-modules)



An exact functor is a functor that preserves exact sequences. For example, F is an exact
functor if a short exact sequence

0o—™ M —M—> M"—» 0 — O0—>FM)—>FM)y—>FM"—>0
is exact.

Some functors are left or right exact. Left exact means that

(i)0»M’->M—->M" exact implies 0-F(M")—>F(M)—-F(M") exact.

Or

(ii) M'>M—->M"-0 exact implies 0-F(M”)—>F(M)—-F(M") exact

A good example of this is Homa which is left exact. In particular Homa(-,N) satisfies (ii) such

u \
that (*) M—» M —» M"—> 0 exact implies

v* u*
(**) 0— Homa (M”, N) —> Homa (M, N)—/> Homa (M’, N) is exact for every N.

What is v* and u*?

N N
v T a”’ u* I a
M— M” M—— M
\% u

Proof 1) Exact at Homa (M”, N) iff v* is injective. Take a in Homa (M”, N) and assume v*(a)
= 0 iff aov =0 iffa(v(m)) = 0, for every m, v is surjective. Since (*) is exact at M” this
implies that every element of M” is of the form v(m) for some m in M. Thus a(m”) = 0 for
every m” in M” implies that a= 0. Then ker(v*) = 0 implies v* injective.

2) Exact at Homa(M,N). i) u*ov* iff (vou)* = 0. True because veu=in (*) since (*) exact at M.
ii) take any b in Homa(M,N), assume u*(b) = 0 iff bou = 0 which implies that b vanishes on
ker(v) since ker(v) = im(u) which implies b factors through M— M /ker(v) which is
isomorphic to M” which implies there exists b”:M”— N such that b”ev=b. Conclusion,
the sequence is exact at Homa(M,N).

Note: Homa(N,-) satisfies (i) for every N



The Snake Lemma

u* v*
0—— ker(f')—— ker(f)——ker(f’) ——d

if’[\ u ifp v lf[\
> M

» M’ —> ()

0O— M

f f f’
v u‘ v \'4 v
0 >N’ > N >N —>0
) 124
p p p
v u*’ v V*’ v

— coker(f)— coker(f) — coker(f")—>0

Assumptions
(i)The rows are short exact sequences
(ii) all the squares commute
Then the sequence
u* v* d u® v¥
0 — ker(f'y— ker(f) —»ker (f ") —» coker(f ") —» coker(f) —» coker(f ") —»-0
is exact at all 6 of the modules and a connecting homomorphism d: ker (f")— coker(f")
exists.

How do we define d: ker (f"y— coker(f")?

Let m” € ker (f”) which is contained in M”. The top row is exact thus v is surjective which
implies there exists an m in M s.t. v(m) = m” (not necessarily unique). Let n:= f(m) implies
v'(n) =V (f(m))=f’(m”) = 0 because m” is an element of ker(f”) and therefore f(m)is in



the kernel of v’. The bottom row is exact which implies that there exists a unique n’ in N’ by
injectivity of u’(n”) = f(m) = n. Then define
d(m”):= p’'(n’)

Exactness at ker(f)

Since the square with edges v \circ i f commutes, then v \circ i £ \circ u**(a) = i {f’’} \circ v** \circ u**(a) = 0.
Proof: (i)to be verified: v¥ou*=0. Take a in ker(f')\Then, by commutativity of squares
irru*(a) = ucir(a) then veo irou*(a) = 0 by exactness>I¢ is injective therefore v*ou*=0

(ii)to be verified: ker(v*)< im(u*). Take b in ker(v*). Then v*(b)= 0 €ker(f”). i is
injective thus 0EM”. Then veif(b) = 0 by commutativity of the squares. if(b) €ker(v) = im
(u) by exactness. Then if(b) = u(c) for some c € M. ir is injective therefore there exists
c’eker(f’) where u*(c’) =b


Since the square with edges v \circ i_f commutes, then v \circ i_f \circ u^*(a) = i_{f’’} \circ v^* \circ u^*(a) = 0.


