Bogdan Panfilie

November 24, 2016

Modules Over A Ring

For the purpose of this presentation we will be considering a commutative ring A with unity (1_{A})

<u>Modules</u>

Definition: M is an A-**module** is an abelian group w.r.t. addition and with a mapping : A x M → M such that (a,x) is ax that satisfies the following conditions $\forall a,b \in A$ and $\forall x,y \in M$: (1) a(x + y) = ax + ay

(2)(a+b)x = ax + bx

(3) (ab)x = a(bx)

 $(4) 1_A x = x$

Definition: M, N modules, f: M \rightarrow N is an A-module homomorphism if it satisfies $\forall a \in A$ and $\forall x, y \in M$:

(1) f(x+y) = f(x) + f(y)(2) f(ax) = af(x)

Definition: M, N modules. Hom_A(M,N) is the set of A-module homomorphisms from M to N.

<u>Submodules</u>

Definition: $M' \subseteq M$ is a submodule if it is a subgroup of M and it is closed under multiplication. That is, $\forall a \in A$, and $\forall x \in M$ then $ax \in M$.

Prop . (The Submodule Criterion) Let A be a ring and let M be an A-module. A subset M' of M is a submodule of M if and only if (1) $M' \neq \emptyset$, and (2) $x + ay \in M'$ for all $a \in A$ and for all $x, y \in M'$.

<u>Proof</u>

 \longrightarrow M' is a submodule, then $0 \in$ M' so N $\neq \emptyset$. Also M' is closed under addition and is sent to itself under the action of elements of A.

Assume (1) and (2). Let a = -1 and apply the subgroup criterion (in additive form) to see that M' is a subgroup of M. In particular, $0 \in M'$. Now let x = 0 and apply hypothesis (2) to see that M' is sent to itself under the action of R.

<u>Quotient Modules</u>

Definition: M a module and M' \subseteq M a submodule then M/M' is an A-module if we define an action, a(x + M') = ax + M' for every $a \in A$ and $(x + M') \in M/M'$.

Prop. There is a mapping $\Phi:M \longrightarrow M/M'$ such that $\Phi(x) = x + M'$. It is an A-module homomorphism and ker(Φ)=M'.

Proof.

- M abelian additive group M/M' is an additive abelian group
- Is the action of a∈A on x + M' well defined? Let x + M' = y + M' → x y ∈ M' and M' submodule → a(x y) ∈ M' → ax ay ∈ M' → ax + M' = ay + M' → action is well defined.
- Check the axioms of the module. For example, $\forall a1, a2 \in A \text{ and } x + M' \in M/M'$ then $(a_1a_2)(x + M') = (a_1a_2x) + M' = a_1 (a_2x + M') = a_1 (a_2(x + M'))$. This proves the 3rd condition in the definition of an A-module
- Φ:M→ M/M' is the projection of a an abelian group onto an abelian group.
 Every subgroup of an abelian group is normal → ker(Φ) = M' by exercise 11 that we did in the beginning of the term.
- $\Phi(x + y) = x + y + M' = x + M' + y + M' = \Phi(x) + \Phi(y)$ and $\Phi(ax) = ax + M' = a(x + M') = a \Phi(x) \implies \Phi$ is an A- module homomorphism

More Definitions

For f: $M \longrightarrow N$ an A-module homomorphism then the **kernel** of f is the set

$$Ker(f) = \{x \in M \mid f(x) = 0\}$$

The kernel of f is a submodule of M. The **image** of f is the set

$$Im(f)=f(M)$$

The image of f is a submodule of N. The cokernel of f is the set

$$Coker(f) = N/Im(f)$$

Exact Sequences of Modules

A sequence of modules and module homomorphisms

$$... \longrightarrow M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \longrightarrow ...$$

is called **exact** at M_i if $Im(f_i) = Ker(f_{i+1})$.

Equivalently (i) $g \circ f = 0$

(ii) $\forall x_i \in M_i$, if $f_{i+1}(x_i) = 0$ then $\exists x_{i-1} \in M_{i-1}$ s.t. $x_i = f_i(x_{i-1})$

If the above sequence has an infinite amount of modules and module homomorphisms then it is a **long exact sequence**.

Simple examples of exact sequences

 $0 \longrightarrow M' \longrightarrow M$ is exact at M' iff Ker(f)=Im($0 \longrightarrow M'$)= 0. This implies that f is a monomorphism(injective).

 $M \longrightarrow M'' \longrightarrow 0$ is exact at M'' iff $Im(g) = Ker(M'' \longrightarrow 0) = M''$. This implies that g is an epimorphism(surjective).

A short exact sequence is of the form $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$

An s.e.s is exact at M', M, M", f is injective, and g is surjective.

Exact Functors

A **functor** is a mapping between categories (in this case A-modules)

An **exact functor** is a functor that preserves exact sequences. For example, F is an exact functor if a short exact sequence

 $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0 \longrightarrow F(M') \longrightarrow F(M'') \longrightarrow 0$ is exact.

Some functors are left or right exact. Left exact means that

(i) $0 \rightarrow M' \rightarrow M \rightarrow M''$ exact implies $0 \rightarrow F(M') \rightarrow F(M) \rightarrow F(M'')$ exact.

0r

(ii) $M' \rightarrow M \rightarrow M'' \rightarrow 0$ exact implies $0 \rightarrow F(M'') \rightarrow F(M) \rightarrow F(M')$ exact

A good example of this is Hom_A which is left exact. In particular Hom_A(-,N) satisfies (ii) such

that (*) $M' \longrightarrow M'' \longrightarrow 0$ exact implies

(**) 0 \longrightarrow Hom_A (M", N) $\xrightarrow{v^*}$ Hom_A (M, N) $\xrightarrow{u^*}$ Hom_A (M', N) is exact for every N.

What is v* and u*?

Proof 1) Exact at Hom_A (M", N) iff v* is injective. Take a in Hom_A (M", N) and assume v*(a) = 0 iff a•v = 0 iff a(v(m)) = 0, for every m, v is surjective. Since (*) is exact at M" this implies that every element of M" is of the form v(m) for some m in M. Thus a(m") = 0 for every m" in M" implies that a= 0. Then ker(v*) = 0 implies v* injective. 2) Exact at Hom_A(M,N). i) u*•v* iff (v•u)* = 0. True because v•u=in (*) since (*) exact at M. ii) take any b in Hom_A(M,N), assume u*(b) = 0 iff b•u = 0 which implies that b vanishes on ker(v) since ker(v) = im(u) which implies b factors through M \longrightarrow M/ker(v) which is isomorphic to M" which implies there exists b":M" \longrightarrow N such that b"•v=b. Conclusion, the sequence is exact at Hom_A(M,N).

Note: Hom_A(N,-) satisfies (i) for every N

The Snake Lemma

Assumptions

(i) The rows are short exact sequences

(ii) all the squares commute

Then the sequence

 $0 \longrightarrow \ker(f') \longrightarrow \ker(f) \longrightarrow \ker(f'') \longrightarrow \operatorname{coker}(f'') \longrightarrow \operatorname{coker}(f) \longrightarrow \operatorname{coker}(f'') \longrightarrow 0$

is exact at all 6 of the modules and a connecting homomorphism d: ker $(f') \longrightarrow coker(f')$ exists.

How do we define d: ker $(f') \rightarrow coker(f')$?

Let $m'' \in \text{ker}(f')$ which is contained in M''. The top row is exact thus v is surjective which implies there exists an m in M s.t. v(m) = m'' (not necessarily unique). Let n := f(m) implies v'(n) = v'(f(m)) = f''(m'') = 0 because m'' is an element of ker(f') and therefore f(m) is in

the kernel of v'. The bottom row is exact which implies that there exists a unique n' in N' by injectivity of u'(n') = f(m) = n. Then define

d(m'') := p'(n')

Exactness at ker(f)

Since the square with edges v \circ i_f commutes, then v \circ i_f \circ u^*(a) = i_{f''} \circ v^* \circ u^*(a) = 0. Proof: (i)to be verified: $v^* \circ u^* = 0$. Take a in ker(f'). Then, by commutativity of squares $i_{f^\circ}u^*(a) = u \circ i_f(a)$ then $v \circ i_f \circ u^*(a) = 0$ by exactness. $I_{f'}$ is injective therefore $v^* \circ u^* = 0$

(ii) to be verified: ker(v^{*}) \subseteq im(u^{*}). Take b in ker(v^{*}). Then v^{*}(b)= 0 \in ker(f'). i_{f'} is injective thus 0 \in M''. Then voi_f(b) = 0 by commutativity of the squares. i_f(b) \in ker(v) = im (u) by exactness. Then i_f(b) = u(c) for some c \in M'. i_f is injective therefore there exists c' \in ker(f') where u^{*}(c') = b