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Modules Over A Ring 

 

For the purpose of this presentation we will be considering a commutative ring A with 
unity (1A) 

Modules 

Definition: M is an A-module is an abelian group w.r.t. addition and with a mapping 
 �: A x M             M such that � (a,x) is ax that satisfies the following conditions ∀ a,b ∈ A and 
∀ x,y ∈ M : 

(1) a(x + y) = ax + ay 
 

(2) (a +b)x = ax + bx 
 

(3) (ab)x = a(bx) 
 

(4) 1A x = x 

Definition: M, N modules,   f: M           N is an A-module homomorphism if it satisfies ∀ a ∈ A 
and ∀ x,y ∈M:  

(1) f(x+y) = f(x) + f(y)              

(2) f(ax) = af(x) 

 

Definition: M, N modules. HomA(M,N) is the set of A-module homomorphisms from M to N. 

Submodules 

Definition: M’⊆M is a submodule if it is a subgroup of M and it is closed under  
multiplication. That is, ∀ a ∈ A, and ∀ x ∈M then ax ∈ M. 
 
Prop . (The Submodule Criterion) Let A be a ring and let M be an A-module. 
A subset M’ of M is a submodule of M if and only if 
(1) M’ ≠ ∅, and 
(2) x + ay ∈ M’ for all a ∈ A and for all x , y ∈ M’. 



Proof 
              M’ is a submodule, then 0 ∈ M’ so N ≠ ∅. Also M’ is closed under addition 
and is sent to itself under the action of elements of A. 
              Assume ( 1 ) and (2). Let a = - 1 and apply the subgroup criterion (in additive form) 
to see that M’ is a subgroup of M. In particular, 0 ∈ M’. Now let x = 0 and apply hypothesis 
(2) to see that M’ is sent to itself under the action of R.  
 

Quotient Modules 

Definition: M a module and M’⊆ M a submodule then M/M’ is an A-module if we define an 
action, a(x + M’) = ax + M’ for every a ∈ A and (x + M’)∈ M/M’. 

Prop. There is a mapping Φ:M            M/M’  such that Φ(x) = x + M’. It is an A-module 
homomorphism and ker(Φ)=M’. 

 

Proof. 

x M abelian additive group             M/M’ is an additive abelian group  

x Is the action of a∈A   on x + M’ well defined? Let x + M’ = y +M’               x – y ∈ M’ 
and M’ submodule              a(x –  y) ∈ M’              ax – ay ∈ M’               ax + M’ = ay + M’                      
action is well defined. 

x Check the axioms of the module. For example, ∀a1, a2∈ A and x + M’∈ M/M’ then 
(a1a2)(x + M’) = (a1a2x) + M’= a1 (a2x + M’)= a1 (a2(x + M’)). This proves the 3rd 
condition in the definition of an A-module 

x  Φ:M            M/M’ is the projection of a an abelian group onto an abelian  group. 
Every subgroup of an abelian group is normal               ker(Φ)= M’ by exercise 11 
that we did in  the beginning of the term. 

x Φ(x + y) = x + y + M’ = x + M’ + y +M’ = Φ(x) + Φ(y) and 
              Φ(ax) = ax+ M’ = a(x + M’) = a Φ(x)              Φ is an A- module homomorphism 
 

More Definitions  

For f: M            N an A-module homomorphism then the kernel of f is the set  

Ker(f) = {x∈M ∣ f(x) = 0} 

The kernel of f is a submodule of M. The image of f is the set 

Im(f)=f(M) 



The image of f is a submodule of N. The cokernel of f is the set  

Coker(f) = N/Im(f) 

 

Exact Sequences of Modules 

A sequence of modules and module homomorphisms 

                                                                              fi            fi+1 
                                                   …            Mi-1                   Mi                   Mi+1                   … 
 

is called exact  at Mi if Im(fi) = Ker(fi+1).  

Equivalently   (i) gof = 0 

  (ii) ∀ xi ∈Mi, if fi+1(xi) = 0 then ∃xi-1∈ Mi-1 s.t. xi = fi(xi-1) 

 If the above sequence has an infinite amount of  modules and module homomorphisms  
then it is a long exact sequence. 
 
Simple examples of exact sequences 

                          f 
0              M’              M is exact at M’ iff Ker(f)=Im(0            M’)= 0. This implies that f is a  
monomorphism(injective).  
   
        g 
M             M’’             0 is exact at M’’ iff Im(g)=Ker(M’’            0)= M’’. This implies that g is  
an epimorphism(surjective). 
 
 
A short exact sequence is of the form 
                           f                g 
0              M’              M               M’’             0    
 
An s.e.s is exact at M’, M, M’’, f is injective, and g is surjective. 
 
 
 
Exact Functors 
 
A functor is a mapping between categories (in this case A-modules) 
 



An exact functor is a functor that preserves exact sequences. For example, F is an exact 
functor if a short exact sequence  
 
0              M’              M               M’’             0                  0            F(M’)           F(M)           F(M’’)           0 
is exact. 
 
 
Some functors are left or right exact. Left exact means that 
 
(i)0→M’→M→M’’ exact implies 0→F(M’)→F(M)→F(M’’) exact. 
 
Or 
 
(ii) M’→M→M’’→0 exact implies 0→F(M’’)→F(M)→F(M’) exact 
 
A good example of this is HomA which is left exact. In particular HomA(-,N) satisfies (ii) such 
   
                        u             v                     
that  (*) M’             M             M’’            0 exact implies  
 
                                                         v*                               u*  
(**) 0              HomA (M’’, N)             HomA (M, N)             HomA (M’, N) is exact for every N. 
 
What is v* and u*? 
 
                       N                                                  N 
                                           
      v*                 a’’                            u*                a 
 
M                   M’’                          M’                 M       
           v                                                    u 
 
Proof 1) Exact at HomA (M’’, N) iff v* is injective. Take a in HomA (M’’, N) and assume v*(a) 
= 0 iff  a∘v = 0 iff a(v(m)) = 0, for every m, v is surjective. Since (*) is exact at M’’ this 
implies that every element of M’’ is of the form v(m) for some m in M. Thus a(m’’) = 0 for 
every m’’ in M’’ implies that a= 0. Then ker(v*) = 0 implies v* injective. 
2) Exact at HomA(M,N). i) u*∘v* iff (v∘u)* = 0. True because v∘u=in (*) since (*) exact at M. 
ii) take any b in HomA(M,N), assume u*(b) = 0 iff b∘u = 0 which implies that b vanishes on 
ker(v) since ker(v) = im(u) which implies b factors through M            M/ker(v) which is 
isomorphic to M’’ which implies there exists b’’:M’’            N such that b’’∘v=b. Conclusion, 
the sequence is exact at HomA(M,N). 
 
Note: HomA(N,-) satisfies (i) for every N 
 
 



The Snake Lemma 
 
                                   u*                  v* 
0                ker(f’)            ker(f)           ker(f’’)                   d                  
                    
                 if’              u      if            v     if’’ 
0                  M’                    M                   M’’             0    
    
                   f’                       f                    f’’      
                                u‘                      v’ 
0                  N’                     N                    N’’             0    
 
                 p’                       p                   p’’ 
                                u*’                      v*’    
            coker(f’)            coker(f)           coker(f’’)     0 
 
 
 
Assumptions 
 
(i)The rows are short exact sequences  
 
(ii) all the squares commute 
 
 
Then the sequence  
                                 u*                 v*                     d                          u*’                     v*’  
0              ker(f ’)          ker(f)         ker (f ’’)           coker(f ’)           coker(f)          coker(f ’’)           0 
 
is exact at all 6 of the modules and a connecting homomorphism d: ker (f’’)           coker(f ’) 
exists.  
 
 
How do we define d: ker (f ’’)           coker(f ’)? 
 
 
Let m’’ ∈ ker (f’’) which is contained in M’’. The top row is exact thus v is surjective which 
implies there exists an m in M s.t. v(m) = m’’ (not necessarily unique). Let n:= f(m) implies 
v’(n) = v’(f(m))= f’’(m’’) = 0 because m’’ is an element of ker(f’’) and therefore f(m)is in 



the kernel of  v’. The bottom row is exact which implies that there exists a unique n’ in N’ by 
injectivity of u’(n’) = f(m) = n. Then define  
                                                                       d(m’’):= p’(n’)  
   
Exactness at ker(f) 
 
Proof: (i)to be verified: v*∘u*=0. Take a in ker(f’). Then, by commutativity of squares 
if∘u*(a) =  u∘if’(a) then v∘ if ∘u*(a) = 0 by exactness. If’’ is injective therefore v*∘u*=0 
             (ii)to be verified: ker(v*)⊆ im(u*). Take b in ker(v*). Then v*(b)= 0 ∈ker(f’’). if’’ is 
injective thus 0∈M’’. Then v∘if(b) = 0 by commutativity of the squares. if(b) ∈ker(v) = im 
(u) by exactness. Then if(b) = u(c) for some c ∈ M’.  if’ is injective therefore there exists 
c’∈ker(f’) where u*(c’) = b 

  

Since the square with edges v \circ i_f commutes, then v \circ i_f \circ u^*(a) = i_{f’’} \circ v^* \circ u^*(a) = 0.


