MORE PRACTICE FINAL

(1) Assume that the following diagram of group homomorphisms commutes and that the two rows are exact sequences.

$$\begin{array}{cccc} A & \stackrel{\psi}{\longrightarrow} & B & \stackrel{\phi}{\longrightarrow} & C \\ \downarrow \alpha & & \downarrow \beta & & \downarrow \gamma \\ A' & \stackrel{\psi'}{\longrightarrow} & B' & \stackrel{\phi'}{\longrightarrow} & C' \end{array}$$

Prove that if β is surjective and if γ and ψ' are injective then α is surjective.

- (2) Let I and J be ideals of R, a ring with identity $1 \neq 0$. Recall that IJ is the set of all finite sums of products xy where $x \in I$ and $y \in J$.
 - (a) Prove that I + J is the smallest ideal containing both I and J.
 - (b) Prove that IJ is an ideal contained in $I \cap J$.
 - (c) Give an example where $IJ \neq I \cap J$.
 - (d) Prove that if R is commutative and if I + J = R, then $IJ = I \cap J$
- (3) Let A and B be ideals in R, a commutative ring with $1 \neq 0$. For $r \in R$, prove that $\phi(r) = (r+A, r+B)$ is a ring homomorphism from R to $R/A \times R/B$ and compute ker ϕ .
- (4) Let \mathbb{F} be a field. Show that the subring $\mathbb{F}[x, x^2y, x^3y^2, \dots, x^ny^{n-1}, \dots]$ of the ring $\mathbb{F}[x, y]$ contains an ideal which is not finitely generated.
- (5) Prove that the ring $\mathbb{Z}[x_1, x_2, x_3, \ldots]/\langle x_1x_2, x_3x_4, x_5x_6, \ldots \rangle$ contains infinitely many minimal prime ideals.
- (6) Suppose that I is a monomial ideal generated by monomials m_1, m_2, \ldots, m_k .
 - (a) Prove that the polynomial $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$ is in I if and only if every monomial term f_i of f is a multiple of one of the m_i .
 - (b) Fix a monomial ordering on $R = \mathbb{F}[x_1, x_2, \dots, x_n]$ and suppose that $\{g_1, g_2, \dots, g_m\}$ is a Gröbner basis for the ideal I in R. Prove that $h \in LT(I)$ if and only if h is a sum of monomial terms each of which is divisible by some $LT(g_i)$.
- (7) Show that $\{x y^3, y^5 y^6\}$ is a Gröbner basis for the ideal $I = \langle x y^3, -x^2 + xy^2 \rangle$ with respect to lexicographic ordering where x > y in the ring $\mathbb{F}[x, y]$. (8) Prove that the rings $\mathbb{F}[x, y]/\langle y^2 - x \rangle$ and $\mathbb{F}[x, y]/\langle y^2 - x^2 \rangle$ are not isomorphic for any field \mathbb{F} .