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Exercise 1.1. If u⃗ ∈ Cn and Mu⃗ = 0⃗Cm , then show that T (L−1B (u⃗)) = 0⃗W .

Solution 1.2. Suppose that u⃗ ∈ Cn and Mu⃗ = 0⃗Cm , with M = C[T ]B. Let u⃗ be denoted as follows:

u⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
⋮
un

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cn.

Now, since M = C[T ]B, we have that:

M = [LC (T (b⃗1)) , LC (T (b⃗2)) , . . . , LC (T (b⃗n))] ,

letting B = {b⃗1, b⃗2, . . . , b⃗n}. Since Mu⃗ = 0⃗Cm , we have that:

LC (T (b⃗1))u1 +⋯ +LC (T (b⃗n))un = 0⃗Cm .

By linearity of LC and T , we have that:

LC (T (u1b⃗1 +⋯ + unb⃗n)) = 0⃗Cm .

Since LC is a linear isomorphism, from the above equality, we have that:

T (u1b⃗1 +⋯ + unb⃗n) = 0⃗W .

Equivalently, T (L−1B (u⃗)) = 0⃗W .

Exercise 1.3. Show that V ⊕W forms a vector space.

Solution 1.4. Given (v⃗, w⃗), (x⃗, y⃗) ∈ V ⊕W , we have that

(v⃗, w⃗) +⊕ (x⃗, y⃗) ∈ V ⊕W,

since +V is a binary operation on V and +W is a binary operation onW , with v⃗+V x⃗ ∈ V and w⃗+W y⃗ ∈W .

The commutativity of +⊕ is inherited from the commutativity of +V and +W in an obvious manner, as
indicated below.

(v⃗1, w⃗1) +⊕ (v⃗2, w⃗2) = (v⃗1 +V v⃗2, w⃗1 +W w⃗2)
= (v⃗2 +V v⃗1, w⃗2 +W w⃗1)
= (v⃗2, w⃗2) +⊕ (v⃗1, w⃗1).

The associativity of +⊕ is inherited from the associativity of +V and +W in an obvious manner, as
indicated below.

(v⃗1, w⃗1) +⊕ ((v⃗2, w⃗2) +⊕ (v⃗3, w⃗3)) = (v⃗1, w⃗1) +⊕ (v⃗2 +V v⃗3, w⃗2 +W w⃗3)
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= (v⃗1 +V (v⃗2 +V v⃗3), w⃗1 +W (w⃗2 +W w⃗3))
= ((v⃗1 +V v⃗2) +V v⃗3, (w⃗1 +W w⃗2) +W w⃗3)
= (v⃗1 +V v⃗2, w⃗1 +W w⃗2) +⊕ (v⃗3, w⃗3)

= ((v⃗1, w⃗1) +⊕ (v⃗2, w⃗2)) +⊕ (v⃗3, w⃗3).

Given (v⃗, w⃗) ∈ V ⊕W , we have that

(v⃗, w⃗) +⊕ (−v⃗,−w⃗) = (0⃗, 0⃗)

and
(v⃗, w⃗) +⊕ (0⃗, 0⃗) = (0⃗, 0⃗) +⊕ (v⃗, w⃗) = (v⃗, w⃗).

The domain of the operation ⋅⊕ is from the Cartesian product of the underlying field of V and W with
the direct sum V ⊕W . It is clear that the codomain of this operation is V ⊕W , since we have that

c ⋅⊕ (v⃗, w⃗) = (cv⃗, cw⃗) ∈ V ⊕W

since cv⃗ ∈ V and vw⃗ ∈ W . The properties concerning the operation ⋅⊕ given below show that V ⊕W
forms a vector space with respect to the operations +V ⊕W and ⋅V ⊕W .

(c + d) ⋅⊕ (v⃗, w⃗) = ((c + d) ⋅V v⃗, (c + d) ⋅W w⃗)
= (c ⋅V v⃗ + d ⋅V v⃗, c ⋅W w⃗ + d ⋅W w⃗)
= (c ⋅V v⃗, c ⋅W w⃗) +⊕ (d ⋅V v⃗, d ⋅W w⃗)
= c ⋅⊕ (v⃗, w⃗) +⊕ d ⋅⊕ (v⃗, w⃗) ,

c ⋅⊕ ((v⃗, w⃗) +⊕ (x⃗, y⃗)) = c ⋅⊕ (v⃗ +V x⃗, w⃗ +W y⃗)
= (c ⋅V (v⃗ +V x⃗) , c ⋅W (w⃗ +W y⃗))
= (c ⋅V v⃗ +V c ⋅V x⃗, c ⋅W w⃗ +W c ⋅W y⃗)
= (c ⋅V v⃗, c ⋅W w⃗) +⊕ (c ⋅V x⃗, c ⋅W y⃗)
= c ⋅⊕ (v⃗, w⃗) +⊕ c ⋅⊕ (x⃗, y⃗) ,

(cd) ⋅⊕ (v⃗, w⃗) = ((cd) ⋅V v⃗, (cd) ⋅W w⃗)
= (c ⋅V (d ⋅V v⃗) , c ⋅W (d ⋅W w⃗))
= c ⋅⊕ (d ⋅V v⃗, d ⋅W w⃗)
= c ⋅⊕ (d ⋅⊕ (v⃗, w⃗)) ,

1 ⋅⊕ (v⃗, w⃗) = (1 ⋅V v⃗,1 ⋅W w⃗)
= (v⃗, w⃗).

Exercise 1.5. Let dim(V ) = n, dim(W ) =m, dim(X) = r, and dim(Y ) = s. Prove that BX⊕Y
[T⊕Q]BV ⊕W

is equal to the following (r + s) × (n +m) matrix.

n m

r
s

[ BX [T ]BV 0
0 BY [Q]BW

]

Solution 1.6. By definition, the transition matrix

BX⊕Y
[T ⊕Q]BV ⊕W
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is equal to the following matrix:

[LBX⊕Y
((T ⊕Q)(v⃗1, 0⃗)), LBX⊕Y

((T ⊕Q)(v⃗2, 0⃗)), . . . , LBX⊕Y
((T ⊕Q)(v⃗n, 0⃗)),

LBX⊕Y
((T ⊕Q)(0⃗, w⃗1)), LBX⊕Y

((T ⊕Q)(0⃗, w⃗2)), . . . , LBX⊕Y
((T ⊕Q)(0⃗, w⃗m))].

The matrix in the upper-right r × n quadrant of

BX⊕Y
[T ⊕Q]BV ⊕W

must be BX [T ]BV , because the first r entries in

LBX⊕Y
((T ⊕Q)(v⃗1, 0⃗))

must be the first r entries in LBX(T (v⃗i)) for all indices i, since BX⊕Y is given by the direct sum of the
bases BX and BY , i.e. BX⊕Y consists of expressions of the form (x⃗j, 0⃗) and (0⃗, y⃗k). Similarly, the last s
entries in

LBX⊕Y
((T ⊕Q)(v⃗i, 0⃗))

all must be 0 since Q(0⃗) = 0⃗. Symmetric arguments may be used to evaluate the remaining quadrants.

Exercise 1.7. Let V = R2, and let W = R2. With respect to the tensor product V ⊗W , show that:

(1,1) ⊗ (1,4) + (1,−2) ⊗ (−1,2) = 0 (1,0) ⊗ (1,0)+
6 (1,0) ⊗ (0,1)+
3 (0,1) ⊗ (1,0)+
0 (0,1) ⊗ (0,1) .

With respect to the direct sum V ⊕W , show that

((1,1) , (1,4)) + ((1,−2) , (−1,2)) = ((2,−1) , (0,6)) .

Solution 1.8. Recall that the tensor product M ⊗N of two modulues M and N over a ring R may
informally be defined as the set of expressions of the form m ⊗ n for m ∈M and n ∈ N , subject to the
following relations:

(i) x⊗ (y + y′) = x⊗ y + x⊗ y′;

(ii) (x + x′) ⊗ y = x⊗ y + x′ ⊗ y;

(iii) (x ⋅ r) ⊗ y = x⊗ (r ⋅ y).

Expand the expression
(1,1) ⊗ (1,4) + (1,−2) ⊗ (−1,2)

using the above relations as follows.

(1,1) ⊗ (1,4) + (1,−2) ⊗ (−1,2)
= (1,0) ⊗ (1,4) + (1,−2) ⊗ (−1,2) + (0,1) ⊗ (1,4)
= (1,0) ⊗ (1,0) + (1,−2) ⊗ (−1,2) + (0,1) ⊗ (1,4) + (1,0) ⊗ (0,4)
= (1,0) ⊗ (1,0) + (1,−2) ⊗ (−1,2) + (0,1) ⊗ (1,4) + 4(1,0) ⊗ (0,1)
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= (1,0) ⊗ (1,0) + (1,−2) ⊗ (−1,2) + (0,1) ⊗ (1,0) + 4(1,0) ⊗ (0,1) + (0,1) ⊗ (0,4)
= (1,0) ⊗ (1,0) + (1,−2) ⊗ (−1,2) + (0,1) ⊗ (1,0) + 4(1,0) ⊗ (0,1) + 4(0,1) ⊗ (0,1)
= (1,0) ⊗ (1,0) + (1,0) ⊗ (−1,2) + (0,1) ⊗ (1,0) + 4(1,0) ⊗ (0,1) + 4(0,1) ⊗ (0,1)
+ (0,−2) ⊗ (−1,2)
= (1,0) ⊗ (1,0) − (1,0) ⊗ (1,−2) + (0,1) ⊗ (1,0) + 4(1,0) ⊗ (0,1) + 4(0,1) ⊗ (0,1) − 2(0,1) ⊗ (−1,2)
= (0,1) ⊗ (1,0) + 4(1,0) ⊗ (0,1) + 4(0,1) ⊗ (0,1) + 2(0,1) ⊗ (1,−2) + 2(1,0) ⊗ (0,1)
= (0,1) ⊗ (1,0) + 6(1,0) ⊗ (0,1) + 2(0,1) ⊗ (1,0)
= 3(0,1) ⊗ (1,0) + 6(1,0) ⊗ (0,1).

Using componentwise addition, we have that (1,1) + (1,−2) = (2,−1) and (1,4) + (−1,2) = (0,6), so
((1,1), (1,4)) + ((1,−2), (−1,2)) = ((2,−1), (0,6)).

Exercise 1.9. Let BV = {v⃗1, v⃗2, v⃗3} and BW = {w⃗1, w⃗2}. Let φ∶V → V be such that

φ (av⃗1 + bv⃗2 + cv⃗3) = cv⃗1 + 2av⃗2 − 3bv⃗3,

and let ψ∶W →W be such that

ψ (aw⃗1 + bw⃗2) = (a + 3b) w⃗1 + (4b − 2a) w⃗2.

Compute BV [φ]BV , BW [ψ]BW , and
BV ⊗W [φ⊗ ψ]BV ⊗W .

Note that BV ⊗W consists of six elements that have a specific order.

Solution 1.10. Begin by computing BV [φ]BV and BW [ψ]BW as follows.

BV [φ]BV = [LBV (φ(v⃗1)), LBV (φ(v⃗2)), LBV (φ(v⃗3))]

=
⎡⎢⎢⎢⎢⎢⎣

c 0 0
0 2a 0
0 0 −3b

⎤⎥⎥⎥⎥⎥⎦
,

BW [ψ]BW = [LBW (ψ(w⃗1)), LBW (ψ(w⃗2))]

= [a + 3b 0
0 4b − 2a

] .

The matrix
BV ⊗W [φ⊗ ψ]BV ⊗W

may be evaluated as the Kronecker product of BV [φ]BV and BW [ψ]BW . Write A = BV [φ]BV , and write
B = BW [ψ]BW . Also, let the entries of A be denoted as follows: A = [aij]1≤i,j≤3. Then the matrix

BV ⊗W [φ⊗ ψ]BV ⊗W
is equal to the Kronecker product of A and B, which is equal to the following matrix:

⎡⎢⎢⎢⎢⎢⎣

a1,1B a1,2B a1,3B
a2,1B a2,2B a2,3B
a3,1B a3,2B a3,3B

⎤⎥⎥⎥⎥⎥⎦
.
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Explicitly, we have that the matrix
BV ⊗W [φ⊗ ψ]BV ⊗W

is equal to the following matrix:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ac + 3bc 0 0 0 0 0
0 4bc − 2ac 0 0 0 0
0 0 2a2 + 6ab 0 0 0
0 0 0 8ab − 4a2 0 0
0 0 0 0 −3ab − 9b2 0
0 0 0 0 0 −12b2 + 6ab

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Exercise 1.11. Prove that if φ∶G→H is a homomorphism, then im(φ) ≤H with respect to ○H , where
im(φ) = {φ(g) ∶ g ∈ G}.
Solution 1.12. Given a subset S of the underlying set of a group T , to prove that S forms a subgroup
of T , it suffices to prove that S is closed under the underlying binary operation of T and that S is closed
under inverses with respect to this operation. This property concerning subgroups is sometimes referred
to as the Two-Step Subgroup Test (see Joseph A. Gallian’s Contemporary Abstract Algebra).

So, let g1 and g2 be arbitrary elements in G, so that φ(g1) and φ(g2) are arbitrary elements in im(φ).
Since φ∶G→H is a homomorphism, we have that

φ(g1) ○H φ(g2) = φ(g1 ○G g2) ∈ im(φ),

thus proving that im(φ) is closed with respect to ○H . Similarly, we have that

(φ(g))−1 = φ(g−1) ∈ im(φ)

for g ∈ G, since
(φ(g))−1φ(g) = eH = φ(eG) = φ(g−1g) = φ(g−1)φ(g)

since a group homomorphism must map a group identity element to another group identity element,
since φ(eGg) = φ(g) = φ(eG)φ(g), and thus φ(eG) = eH from the equality φ(g) = φ(eG)φ(g).
Exercise 1.13. Prove that ker(φ) ⊴ G, where ker(φ) = {g ∈ G ∣ φ(g) = eH}.
Solution 1.14. We begin by proving that ker(φ) ≤ G, using the Two-Step Subgroup Test described
above.

Let g1, g2 ∈ G be such that φ(g1) = eH and φ(g2) = eH , so that g1 and g2 are arbitrary elements in the
kernel ker(φ) of the group homomorphism φ∶G→H. We thus have that

φ(g1) ○ φ(g2) = φ(g1 ○ g2) = eH ○ eH = eH ,

thus proving that g1 ○ g2 ∈ ker(φ). Similarly, since for g ∈ G we have that (φ(g))−1 = φ(g−1) as discussed
above, we have that

(φ(g))−1 = e−1H = eH
if g ∈ ker(φ) and thus φ(g−1) = eH if g ∈ ker(φ), thus proving that ker(φ) ≤ G.

Now, let k ∈ ker(φ), and let i ∈ G. It remains to prove that: iki−1 ∈ ker(φ). Equivalently, it remains to
prove that φ(iki−1) = eH . Using the fact that k ∈ ker(φ), we have that

φ(iki−1) = φ(i)φ(k)φ(i−1) = φ(i)φ(i−1) = φ(i ○ i−1) = φ(eG) = eH ,

thus proving that ker(φ) ⊴ G.

5



Exercise 1.15. Prove Cayley’s theorem.

Solution 1.16. Let ψ denote the mapping which maps g ∈ G to the permutation in SG given by the
mapping h↦ g ● h, letting the codomain of ψ be equal to im(ψ).

First, we begin by proving that ψ is well-defined in the sense that for g ∈ G, ψ(g) is indeed an element
in the codomain of ψ. For g ∈ G, let σg denote the mapping σg ∶G→ G whereby

σg(h) = g ● h = g ○ h ∈ G

for all h ∈ G. The mapping σg must be injective, since

σg(h1) = σg(h2) Ô⇒ gh1 = gh2Ô⇒ h1 = h2,

and the mapping σg ∶G→ Gmust be surjective, since for k ∈ G, we have that: σg(g−1k) = g○g−1○k = k ∈ G,
thus proving that σg ∈ SG, and thus proving that σg is in the codomain of ψ.

Now let g1, g2 ∈ G, and let σg1 ∶G→ G and σg2 ∶G→ G be such that σg1(h) = g1h ∈ G and σg2(h) = g2h ∈ G
for all h ∈ G. Suppose that ψ(g1) = ψ(g2). That is, σg1 = σg2 . That is, g1h = g2h for all h ∈ G. Letting
h = e, we thus have that ψ(g1) = ψ(g2) Ô⇒ g1 = g2, thus proving that ψ is injective.

Since we constructed ψ so that the codomain of ψ is equal to the image of ψ, we have that ψ is surjective
by definition. Since ψ is bijective, it remains to prove that ψ is a group homomorphism.

Again let g1, g2 ∈ G. We thus have that ψ(g1g2) is the mapping σg1g2 ∶G → G which maps h to g1g2h.
But it is clear that the composition ψ(g1) ○ ψ(g2) maps h to g1(g2h) = g1g2h, thus proving that ψ is an
isomorphism.

Exercise 1.17. For all g1, g2 ∈ G, show that either g1H = g2H or g1H ∩ g2H = ∅.

Solution 1.18. Let g1, g2 ∈ G. Our strategy is to show that if g1H ∩ g2H is nonempty, then g1H = g2H.
We remark that we are using the logical equivalence whereby (¬p) → q ≡ q ∨ p.

Suppose that g1H ∩ g2H is nonempty. Note that we are letting H ≤ G. So there exists an element in
the following intersection:

{g1h ∶ h ∈H} ∩ {g2h ∶ h ∈H}.
We thus have that there exist elements h1 and h2 in H such that

g1h1 = g2h2 ∈ g1H ∩ g2H.

Therefore,
g1h1h

−1
2 = g2.

Writing h3 = h1h−12 ∈ H, we thus have that g1h3 = g2. We thus have that the left coset g2H is equal to
{g1h3h ∶ h ∈H}. But since the mapping from H to H which maps h ∈H to h3h is bijective (see previous
exercise), we have that

g2H = {g1h3h ∶ h ∈H} = {h1i ∶ i ∈H} = g1H
as desired.

Exercise 1.19. Show that the canonical mapping φg ∶H → gH is a bijection, so that, as a consequence,
we have that ∣gH ∣ = ∣H ∣. Another consequence of this result is that ∣H ∣ divides ∣G∣ (Lagrange’s theorem).
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Solution 1.20. Let H ≤ G, and let g ∈ G, and let φg ∶H → gH be such that φg(h) = gh ∈ gH for all
h ∈H. We have that

φg(h1) = φg(h2) Ô⇒ gh1 = gh2Ô⇒ h1 = h2,
thus proving the injectivity of φg. Similarly, it is clear that φg is surjective, since for gh ∈ gH we have
that φg(h) = gh. We thus have that ∣gH ∣ = ∣H ∣ as desired.

We now use this result to prove Lagrange’s theorem. We have previously shown that two cosets g1H
and g2H are either disjoint or equal. Therefore, since g ∈ gH for all g ∈ G, we have that G may be
written as a disjoint union of cosets, say

G = g1H ∪ g2H ∪⋯ ∪ gnH

where n ∈ N. But since ∣gH ∣ = ∣H ∣ for g ∈ G, we have that ∣G∣ = n∣H ∣, thus proving Lagrange’s theorem.

Exercise 1.21. For g ∈ G, let order(g) denote the smallest n ∈ N such that gn = e. Show that order(g)
divides ∣G∣.

Solution 1.22. It is easily seen that the set

{1, g, g2, . . . , gorder(g)−1}

forms a cyclic subgroup of G. By Lagrange’s theorem, proven above, we have that the order of this
cyclic subgroup divides ∣G∣, and we thus have that order(g) divides ∣G∣ as desired.

Exercise 1.23. Prove that Stab(x) is a subgroup of G.

Solution 1.24. We again make use of the Two-Step Subgroup Test described above.

Let g1, g2 ∈ G be such that g1 ● x = x and g2 ● x = x, so that g1 and g2 are arbitrary elements in Stab(x).
Now consider the following expression: (g1g2) ● x. By definition of a group action, we have that

(g1g2) ● x = g1 ● (g2 ● x) = g1 ● x = x,

thus proving that Stab(x) is closed under the underlying binary operation of G. Letting g ∈ G be such
that g ● x = x, since (g−1g) ● x = e ● x = x by definition of a group action, we have that g−1 ● (g ● x) = x,
thus proving that g−1 ● x = x as desired, with Stab(x) ≤ G.

Exercise 1.25. Prove that a G-set X is a disjoint union of orbits.

Solution 1.26. Let x be a G-set, and let ●∶G ×X → X denote a group action. Let x, y ∈ X, so that
Orbit(x) and Orbit(y) are arbitrary orbits. Suppose that Orbit(x) ∩Orbit(y) ≠ ∅. Let

g1 ● x = g2 ● y ∈X

denote an element in the nonempty intersection Orbit(x) ∩Orbit(y). We thus have that

(g−12 g1) ● x = y.

Therefore,
Orbit(y) = {g ● (g−12 g1 ● x) ∣ g ∈ G}.

Equivalently,
Orbit(y) = {g(g−12 g1) ● x ∣ g ∈ G}.
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Since the mapping whereby g ↦ g(g−12 g1) is a permutation of G, we thus have that

Orbit(y) = {h ● x ∣ h ∈ G},

thus proving that two orbits are either equal or disjoint. Since x ∈ Orbit(x) for x ∈X, we thus have that
X may be written as a disjoint union of orbits.

Exercise 1.27. Show that the map

φx∶Orbit(x) → G/Stab(x)

given by the mapping
g ● x↦ gStab(x) ∈ G/Stab(x)

is a well-defined, bijective G-set homomorphism.

Solution 1.28. Suppose that g1 ● x = g2 ● x. Equivalently, g−12 g1 ● x = x. Therefore, g−12 g1 ∈ Stab(x),
so g1 ∈ g2Stab(x), so g1Stab(x) = g2Stab(x), since two given cosets must be disjoint or equal. We thus
have the mapping φx is well-defined in the sense that g1 ● x = g2 ● x implies that φx(g1 ● x) = φx(g2 ● x).

Letting g1, g2 ∈ G so that g1 ● x and g2 ● x are arbitrary elements in the domain of φx, we have that

φx(g1 ● x) = φx(g2 ● x) Ô⇒ g1Stab(x) = g2Stab(x).

We thus have that there exist elements g3, g4 ∈ Stab(x) such that

g1g3 = g2g4.

We thus have that
(g1g3) ● x = (g2g4) ● x,

which implies that
g1 ● x = g2 ● x,

thus proving the injectivity of φx. It is obvious that φx is surjective, since given a coset gStab(x) in the
codomain of φx, we have that φx(g) = gStab(x).

Since
φx((hg) ● x) = (hg)Stab(x) = h(gStab(x)) = hφx(g ● x),

we have that φx is a G-set homomorphism.

Exercise 1.29. Prove that if H ⊴ G, then G/H forms a group with respect to the operation ○G/H on
G/H whereby g1H ○G/H g2H = g1g2H for all g1, g2 ∈ G.

Solution 1.30. Assume that H ⊴ G. We begin by showing that the operation ○G/H = ○ is well-defined
in the sense that the expression g1H ○G/H g2H does not depend on the coset representatives of the cosets
g1H and g2H. So, suppose that g1H = g3H and g2H = g4H, letting g1, g2, g3, g4 ∈ G. To prove that the
operation ○G/H is well-defined, it thus remains to prove that:

g1g2H = g3g4H.

Since g1H = g3H, let g3 = g1h1, where h1 ∈H. Similarly, since g2H = g4H, let g4 = g2h2, with h2 ∈H. So,
it remains to prove that

g1g2H = g1h1g2h2H.
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But since H ⊴ G, we have that gH = Hg for all g ∈ G. Since h1g2 ∈ Hg2 = g2H, let h1g2 = g2h3, where
h3 ∈H. We thus have that

g1h1g2h2H = g1g2h3h2H.
But it is clear that

g1g2h3h2H = g1g2H
since the mapping h↦ h3h2h is a bijection on H. We thus have that

g3g4H = g1g2H
as desired, thus proving that ○G/H is well-defined.

Since ○G/H maps elements in (G/H)×(G/H) to G/H, we have that G/H is a binary operation on G/H.
So we have thus far shown that ○G/H is a well-defined binary operation on G/H.

The binary operation ○G/H = ○ inherits the associativity of the underlying binary operation of G in a
natural way:

g1H ○ (g2H ○ g3H) = g1H ○ ((g2g3)H)
= g1(g2g3)H
= (g1g2)g3H
= (g1g2)H ○ g3H
= (g1H ○ g2H) ○ g3H.

We have thus far shown that ○G/H is a well-defined associative binary operation on G/H.

Letting g ∈ G be arbitrary, and letting e = eG denote the identity element in G, we have that:

(eH)(gH) = (eg)H
= eH
= (ge)H
= (gH)(eH).

Again letting g ∈ G be arbitrary, we have that:

(gH)(g−1H) = (g ⋅ g−1)H
= eH
= (g−1g)H
= (g−1H)(gH).

We thus have that if H ⊴ G, then G/H forms a group under the operation ○G/H given above.

Exercise 1.31. Show that φ∶G→ G/H is a group homomorphism, where g ↦ gH, and ker(φ) =H.

Solution 1.32. Since ker(φ) ⊴ G as shown above, from our results given in the previous exercise, we
have that G/H is a group with respect to the binary operation ○G/H .

Now let g1, g2 ∈ G. We thus have that

φ(g1g2) = (g1g2)H = (g1H) ○G/H (g2H) = φ(g1) ○G/H φ(g2)
by definition of the well-defined group operation ○G/H .
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Exercise 1.33. If N is normal in G, then ∀g ∈ G ∃g′ ∈ G gN = Ng′.

Solution 1.34. Our strategy is to prove the following much stronger statement: “N is normal in G if
and only if ∀g ∈ G gN = Ng.”

We are using the following definition of the term normal subgroup given in class: “H is a normal subgroup
of G if ghg−1 ∈H for all g ∈ G and h ∈H, denoted by H ⊴ G.”

(Ô⇒) First suppose that N ⊴ G, i.e. with respect to the above definition. We thus have that hnh−1 ∈ N
for all h ∈ G and n ∈ N . Now consider the left coset gN , letting g ∈ G be arbitrary:

gN = {gn ∶ n ∈ N} .
Now, for gn ∈ gN , we have that gng−1 ∈ N by assumption that N ⊴ G, according to the above definition
of the term normal subgroup. So, letting g be “fixed” (and arbitrary), for each choice of an element
n ∈ N , we have that there exists a corresponding element n′ ∈ N such that gng−1 = n′. That is, for each
n ∈ N , we have that gn = n′g for some n′ ∈ N . So it is clear that

gN = {gn ∶ n ∈ N} = {n′g ∶ n′ ∈M ⊆ N} ⊆ Ng

for some subset M ⊆ N . Similarly, for each element ng in the right coset Ng, since g−1ng = n′′ for some
n′′ ∈ N by the above definition of the term normal subgroup, we have that ng = g(n′′), so it is clear that

Ng = {ng ∶ n ∈ N} = {g(n′′) ∶ n′′ ∈M ′ ⊆ N} ⊆ gN

for some subset M ′ ⊆ N . So since gN ⊆ Ng and gN ⊇ Ng, by mutual inclusion, we have that gN = Ng
as desired.

(⇐Ô) Conversely, suppose that ∀g ∈ G gN = Ng. So, let g ∈ G and n ∈ N be arbitrary. Since gN = Ng,
we have that there exists some element n′ ∈ N such that gn = (n′)g. Therefore, gng−1 = n′ ∈ N , as
desired.

Exercise 1.35. Let MG(A) = {g ∈ G ∣ gag−1 ∈ G for all a ∈ A}, then show that MG(A) is not a group
in general. Hint: Take G to be the group of permutations of the set of integers and show that for
A = {σ ∈ G ∶ σ(i) = i, for i < 0} that g(x) = x + 1 ∈MG(A), but g−1(x) = x − 1 /∈MG(A).

Solution 1.36. Let G denote the permutation group SZ of the set Z of all integers. Let

g = σ∶Z→ Z

denote the bijection whereby σ(z) = z + 1 for z ∈ Z. Let A denote the collection of all permutations in
τ ∈ G such that τ(z) = z if z < 0.

We claim that MG(A) does not form a subgroup of G in this case. Letting σ∶Z→ Z be as given above,
we have that σ ∈MG(A). But is it true that σ−1 is in MG(A)?

The mapping σ−1∶Z → Z is such that σ−1(z) = z − 1 for all z ∈ Z. We have that σ−1 ∈ G, but it is not
true that

∀a ∈ A σ−1a(σ−1)−1 ∈ A,
since for z < 0 and a ∈ A, we have that

σ−1aσ(z) = σa(z + 1),
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but since a ∈ A and z < 0, it is not necessarily true that “a(z + 1) = z + 1”, i.e. it is not necessarily true
“a(−1 + 1) = −1 + 1”, so it is not necessarily true that that

σ−1aσ(z) = a.

For example, if a ∈ A is such that
a(0) = 31415,

then we have that
σ−1aσ(−1) = σ−1a(0) = σ−1(31415) = 31414.

So we have shown that MG(A) is not necessarily closed under inverses with respect to the underlying
binary operation of G, thus proving that MG(A) is not a subgroup of G.

Exercise 1.37. Show that if G is finite then NG(A) =MG(A). Where does the proof fail if G is infinite?

Solution 1.38. The normalizer NG(A) of a subset A of a group G is almost always defined as

NG(A) = {g ∈ G ∣ gA = Ag}

or equivalently as
NG(A) = {g ∈ G ∣ gAg−1 = A}.

This appears to be the standard definition of the normalizer of a subset. Writing

MG(A) ∶= {g ∈ G ∣ gag−1 ∈ A for all a ∈ A},

we claim that if G is finite, then MG(A) = NG(A). So, suppose that G is finite. Letting g be in NG(A),
we have that gA = Ag. So for all a in A, we have that ga = (a′)g for some a′ in A. So, for all a in A,
gag−1 is in A. So, NG(A) is a subset of MG(A). Conversely, let g be in MG(A). So for all a in A, gag−1
is in A. So, for all a in A, ga = (a′′)g for some a′′ in A. This just shows that gA is contained in Ag. But
since G is finite, we know that ∣gA∣ = ∣Ag∣. This is easily seen bijectively. But since gA ⊆ Ag, and since
∣gA∣ = ∣Ag∣, and since G is finite, we may thus deduce that gA = Ag. But then g must be in NG(A), thus
completing our proof.

Now, observe that if G is infinite, it is still true that NG(A) ⊆ MG(A), since if g ∈ NG(A), ga = (a′)g
for some a′ in A, so gag−1 is in A for all a in A. But for the infinite group G, the above proof fails in
its latter part in the following sense. For g in MG(A), we have that: for all a in A, gag−1 is in A. So,
for all a in A, ga = (a′′)g for some a′′ in A. But this just shows that gA is contained in Ag. Using the
previous exercise, it is easily seen that it is not in general true that gA ⊆ Ag implies gA = Ag, given that
G is infinite. Since it is not in general true that gA ⊆ Ag implies gA = Ag, we thus have that g may or
may not be in NG(A), so MG(A) may or may not be contained in NG(A), given that G is infinite.

Exercise 1.39. Show that CG(A) ≤ NG(A) ≤ G.

Solution 1.40. We are using the definition of the normalizer of a subset whereby NG(A) = {g ∈ G ∣ gA =
Ag}. Since eA = Ae, we thus have that NG(A) is nonempty.

Now let g, h ∈ G be such that gA = Ag and hA = Ah so that g and h are arbitrary elements in NG(A).
Consider the expression ghA:

ghA = {gha ∶ a ∈ A} .
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Now, let a ∈ A be arbitrary, so that gha is an arbitrary element in ghA. Since hA = Ah, we have that

ha = a′h

for some a′ ∈ A, and we thus have that
gha = g(a′)h.

Since gA = Ag, we have that
ga′ = a′′g

for some a′′ ∈ A. Therefore,
gha = a′′gh ∈ Agh.

We thus have that
ghA ⊆ Agh.

An obvious symmetric argument may be used to prove the reverse inclusion

ghA ⊇ Agh.

We thus have that NG(A) is closed with respect to the underlying binary operation of G.

As above, let g ∈ NG(A) be arbitrary. We thus have that gA = Ag. Now let a ∈ A be arbitrary. So

ga = a′g

for some a′ ∈ A. Therefore,
ag−1 = g−1a′

for some a′ ∈ A. This shows that each element in Ag−1 is in g−1A. An obvious symmetric argument may
be used to prove the reverse inclusion whereby

Ag−1 ⊇ g−1A.

By the Two-Step Subgroup Test, we thus have that NG(A) ≤ G as desired.

Now recall that the centralizer CG(A) of A is given as follows:

CG(A) = {g ∈ G ∣ ∀a ∈ A ag = ga} .
Now let g ∈ G be such that ∀a ∈ A ag = ga, so that g is an arbitrary element in CG(A). Then it is clear
that

gA = {ga ∶ a ∈ a} = {ag ∶ a ∈ a} = Ag,
thus proving that CG(A) ⊆ NG(A). Also observe that CG(A) is nonempty ae = ea for a ∈ A.

Now let g, h ∈ CG(A) be arbitrary, and let a ∈ A be arbitrary. Since h ∈ CG(A), we have that

ha = ah,

and we thus have that
gha = gah
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Since g ∈ CG(A), from the equality gha = gah, we thus obtain the equality

(gh)a = a (gh) ,

thus proving that CG(A) is closed under the underlying binary operation of the subgroup NG(A).

Again let g ∈ CG(A) be arbitrary, and again let a ∈ A be arbitrary. From the equality

ga = ag

we obtain the equality
ag−1 = g−1a,

thus proving that CG(A) is closed with respect to inverses. We thus have that

CG(A) ≤ NG(A) ≤ G

as desired.

Exercise 1.41. State and prove the four isomorphism theorems for groups.

Solution 1.42. The First Isomorphism Theorem for groups may be formulated in the following manner.

The First Isomorphism Theorem: Let H and G be groups. Then for a morphism φ∶G → H, we have
that ker(φ) ⊴ G, and furthermore, we have that G/ker(φ) ≅ im(φ).

Proof: We have proven in a previous exercise that ker(φ) ⊴ G. As suggested in class, to prove the First
Isomorphism Theorem, one may use the canonical morphism

ψφ = ψ∶G/ker(φ) → im(φ)

given by the mapping gker(φ) ↦ φ(g) for a coset gker(φ) in the domain of ψ, with g ∈ G. To prove
the First Isomorphism Theorem using this canonical morphism, one must show that ψ is a well-defined,
bijective, group homomorphism.

Letting g ∈ G, so that gker(φ) is an arbitrary element in the domain of ψ, we have that

ψ(gker(φ)) = φ(g),

and φ(g) ∈ im(φ) since φ∶G → H. The mapping ψ is well-defined in the sense that ψ(d) is in the given
codomain of ψ for each element d in the comain of ψ. But we also must prove that ψ is well-defined in
the sense that an expression of the form ψ(d) does not depend on a given coset representative for an
element d in the domain of ψ.

So, let g, h ∈ G, so that gker(φ) and hker(φ) are elements in the domain G/ker(φ) of ψφ = ψ. Now,
suppose that gker(φ) = hker(φ). To prove that ψ is well-defined, it thus remains to prove that
ψ(gker(φ)) = ψ(hker(φ)).

Now, under the above assumption whereby gker(φ) = hker(φ), since e ∈ ker(φ), we may thus deduce
that

ge = hk
for some element k ∈ ker(φ). We thus have that

g = hk
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for some element k ∈ ker(φ). Now apply the morphism φ∶G→H to both sides of the equality g = hk:

g = hkÔ⇒ φ (g) = φ (hk)
Ô⇒ φ (g) = φ (h)φ (k)
Ô⇒ φ (g) = φ (h) e
Ô⇒ φ (g) = φ (h)
Ô⇒ ψ(gker(φ)) = ψ(hker(φ)).

So we have shown that
gker(φ) = hker(φ) Ô⇒ ψ(gker(φ)) = ψ(hker(φ))

for cosets gker(φ) and hker(φ) in the domain G/ker(φ) of ψφ = ψ, thus concluding our proof that ψ is
well-defined.

We claim that ψ is injective. Again letting g, h ∈ G, we have that:

ψ(gker(φ)) = ψ(hker(φ)) Ô⇒ φ(g) = φ(h)
Ô⇒ φ(g) (φ(h))−1 = eH = e
Ô⇒ φ(g)φ(h−1) = e
Ô⇒ φ(g ⋅ (h−1)) = e
Ô⇒ g ⋅ (h−1) ∈ ker(φ)
Ô⇒ ∃k ∈ ker(φ) g ⋅ (h−1) = k
Ô⇒ ∃k ∈ ker(φ) g = k ⋅ h.

Now, using the fact that ker(φ) is a normal subgroup, we have that (ker(φ))h = h (ker(φ)). Since there
exists an element k in ker(φ) such that g = k ⋅ h, and since (ker(φ))h = h (ker(φ)), we may deduce that
there exists an element ` ∈ ker(φ) such that g = h ⋅ `. So for m ∈ ker(φ) ⊴ G, we have that

g ⋅m = h ⋅ (` ⋅m) ∈ h (ker(φ)) ,

and we thus have that each element g ⋅ m in g (ker(φ)) is in h (ker(φ)), thus proving the following
inclusion:

gker(φ) ⊆ hker(φ).
We have already shown that:

ψ(gker(φ)) = ψ(hker(φ)) Ô⇒ ∃k ∈ ker(φ) g = k ⋅ h.

Under the assumption that ψ(gker(φ)) = ψ(hker(φ)), we thus have that there exists an element k−1 in
ker(φ) such that

h = k−1g.
Note that we are using the fact that ker(φ) forms a subgroup of the domain of φ in the sense that we
are using the fact that ker(φ) must be closed under inverses. From the equality

h = k−1g,

it is easily seen that
gker(φ) ⊇ hker(φ)
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by repeating the above argument which was used to prove that

(∃k ∈ ker(φ) g = k ⋅ h) Ô⇒ gker(φ) ⊆ hker(φ).

By mutual inclusion, we thus have that

ψ(gker(φ)) = ψ(hker(φ)) Ô⇒ gker(φ) = hker(φ),

thus proving the injectivity ψ.

So, we have thus far shown that ψ is a well-defined injective mapping from G/ker(φ) to im(φ). Now,
let g ∈ G, so that φ(g) is an arbitrary element in the codomain im(φ) of ψ. Since

ψ(gker(φ)) = φ(g) ∈ im(φ),

it is thus clear that ψ is surjective.

So, we have thus far shown that ψ is well-defined and bijective. It thus remains to prove that ψ is a group
homomorphism. Again let g, h ∈ G, so that the left cosets gker(φ) and hker(φ) are arbitrary elements in
the domain G/ker(φ) of ψφ = ψ. Now consider the evaluation of ψ at the product (gker(φ)) ⋅ (hker(φ)):

ψ ((gker(φ)) ⋅ (hker(φ))) = ψ ((g ⋅ h)ker(φ))
= φ(g ⋅ h)
= φ(g) ⋅ φ(h)
= ψ(gker(φ)) ⋅ ψ(hker(φ)).

We thus have that
ψφ = ψ∶G/ker(φ) → im(φ)

is a well-defined, bijective group homomorphism, thus proving that G/ker(φ) ≅ im(φ).

The Second Isomorphism Theorem may be formulated in the following manner:

The Second Isomorphism Theorem: Let G be a group, and let H,K ≤ G be such that H ≤ NG(K). Then
H ∩K ⊴H, and HK/K ≅H/(H ∩K).

Proof: We begin by defining a mapping
τ ∶H →HK/K

whereby h↦ hK for h ∈H.

We claim that τ is a group homomorphism. To show this, we begin be demonstrating that HK forms a
subgroup of G. Let h1, h2 ∈ H and let k1, k2 ∈ K, so that h1k1 and h2k2 are arbitrary elements in HK.
Consider the product

h1k1h2k2.

Now, since H ≤ NG(K). We thus have that hK = Kh for all h ∈ H. In particular, we have that
k1h2 = h2k3 for some element k3 in K. We thus have that

h1k1h2k2 = h1 (k1h2)k2 = h1 (h2k3)k2 = (h1h2) (k3k2) ∈HK,

thus proving that the product HK is closed with respect to the underlying binary operation of G.
Similarly, since (h1k1)−1 = k−11 h−11 , and since hK =Kh for all h ∈H, we thus have that

k−11 h
−1
1 = h3k−11 ∈HK,
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thus effectively proving that HK ≤ G.

Moreover, we claim that K ⊴ HK. Consider the coset k1HK. But recall that hK = Kh for all h ∈ H.
Given an element

k1h1k2 ∈ k1HK
in the left coset k1HK, we have that

k1h1k2 = h1k3k2 = h1 (k3k2k−11 )k1 ∈HKk1

for some k3 ∈K, thus proving the inclusion whereby

k1HK ⊆HKk1.

Conversely, given an element
h1k2k1 ∈HKk1,

we have that
h1k2k1 = h1k3 = k4h1 = k1 (k−11 k4)h1 = k1k5h1 = k1h1k6 ∈ k1HK,

the proving the reverse inclusion whereby

k1HK ⊇HKk1.

We thus have that K ⊴HK as desired.

So, we have shown that the given codomain

cod(τ) =HK/K

of the mapping τ ∶H →HK/K forms a group, in the sense that K ⊴HK.

To prove that τ is a group homomorphism, begin by letting h1, h2 ∈H. Consider the expression τ(h1h2):

τ(h1h2) = (h1h2)K.

We have shown that K ⊴HK. We thus have that

τ(h1h2) = h1h2K = (h1K)(h2K) = τ(h1τ(h2)),

thus proving that τ is a group homomorphism.

Now consider the kernel of the group homomorphism τ ∶H →HK/K:

ker(τ) = {h1 ∈H ∶ τ(h1) =K}
= {h1 ∈H ∶ h1K =K} .

We claim that the above set is equal to H ∩K. Letting x ∈ H ∩K, we have that x ∈ H, and we have
that

xK =K
since x ∈K, thus proving the inclusion whereby:

H ∩K ⊆ ker(τ).
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Conversely, let h1 ∈ H be such that h1K = K. Since e ∈ K, we thus have that h1e = k for some k ∈ K,
and we thus have that h1 = k for some k ∈ K. So it is clear that h1 ∈ H ∩K, thus proving the desired
inclusion given below:

H ∩K ⊇ ker(τ).
We thus have that

ker(τ) =H ∩K,
as desired.

So, since
τ ∶H →HK/K

is a group homomorphism whereby
ker(τ) =H ∩K,

by the First Isomorphism Theorem, we thus have that:

H/ (H ∩K) ≅ im (τ) .

We claim that τ is surjective. To show this, let h1 ∈H and k1 ∈K, so that h1k1K is an arbitrary element
in the codomain

cod(τ) =HK/K
of τ . It is clear that h1k1K = h1K. We thus have that

τ(h1) = h1K = h1k1K ∈HK/K,

thus proving the surjectivity of τ . So, by the First Isomorphism Theorem, we thus have that

H/ (H ∩K) ≅HK/K

as desired.

The Third Isomorphism Theorem may be formulated in the following manner:

The Third Isomorphism Theorem: Let G be a group and let H,K ⊴ G, with H ⊴ K. Then K/H is
normal in G/H, and furthermore, we have that (G/H)/(K/H) ≅ G/K.

Proof: Define γ∶G/H → G/K so that
γ(gH) = gK

for each coset gH in the domain of γ. We begin by showing that γ is a well-defined group homomorphism.
To show that γ is well-defined, begin by letting g1, g2 ∈ G, and suppose that g1H = g2H. Let k1 ∈ K be
arbitrary, so that g1 ⋅ k1 is an arbitrary element in g1K. Since

g1 ⋅ e ⋅ k1 = g1 ⋅ k1,

and since g1H = g2H, we have that

g1 ⋅ k1 = g1 ⋅ e ⋅ k1 = g2 ⋅ h1 ⋅ k1 ∈ g2K

for some h1 ∈ H. An obvious symmetric argument shows that g1K ⊇ g2K. We thus have that γ is
well-defined in the sense that

g1H = g2H Ô⇒ γ(g1H) = γ(g2H).
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Letting g1 and g2 be as given above, since H,K ⊴ G

γ(g1H ⋅ g2H) = γ(g1g2H)
= g1g2K
= g1K ⋅ g2K
= γ(g1H) ⋅ γ(g2H).

We thus have that γ is a group homomorphism. We claim that the kernel of γ is K/H. If gH is in the
kernel of γ, where g ∈ G, then gK = eK = K. So g must be in K. That is, gH ∈ K/H since g ∈ K.
Conversely, given an element kH in K/H, we have that γ(kH) = kK = K, and we thus have that kH
is in ker(γ). We thus have that ker(γ) = K/H as desired. It is clear that γ is surjective, since for
gK ∈ G/K, we have that γ(gH) = gK, with gH ∈ G/H. So, by the first isomorphism theorem, we have
that

(G/H) /ker(γ) ≅ im(γ),
and we thus have that

(G/H) / (K/H) ≅ G/K,
as desired.

The Fourth Isomorphism Theorem may be formulated in the following manner:

The Fourth Isomorphism Theorem: Let G be a group and let H ⊴ G. Then the canonical projection
morphism π∶G→ G/H whereby

g ↦ gH

induces the bijections indicated below:

{K ∶H ⊴K ≤ G} ←→ {K ∶K ≤ G/H},
{K ∶H ⊴K ⊴ G} ←→ {K ∶K ⊴ G/H}.

Let
f ∶ {K ∶H ⊴K ≤ G} → {K ∶K ≤ G/H}

denote the mapping whereby

f(K) = π(K) = {kH ∶ k ∈K} =K/H

for a subgroup K of G such that H ⊴K. We claim that f is well-defined in the sense that f(K) is indeed
an element in the given codomain of f for K ∈ dom(f). Letting K ∈ dom(f), we have that H ⊴K ≤ G.
Since K ⊆ G, we have that K/H ⊆ G/H, and since H ⊴K, we have that K/H forms a group under the
operation ⋅ whereby k1H ⋅ k2H = (k1k2)H for k1, k2 ∈ K. But furthermore, since H ⊴ G, G/H forms a
group with respect to the operation ⋅ whereby g1H ⋅g2H = (g1g2)H for g1, g2 ∈ g, thus showing that K/H
is a subgroup of G/H.

Conversely, consider the mapping

f ′∶ {K ∶K ≤ G/H} → {K ∶H ⊴K ≤ G}

such that: given an element
K = {g1H,g2H, . . . , g∣K∣H} ≤ G/H
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in the domain of f ′, where g1, g2, . . . , g∣K∣ ∈ G, we have that

f ′ (K) =
∣K∣
⋃
i=1
giH = ⋃

k∈K
k.

We claim that f ′ is well-defined in the sense that f ′(K) ∈ cod(f ′) for K ∈ dom(f ′). Again let

K = {g1H,g2H, . . . , g∣K∣H} ≤ G/H

be an element in the domain of f ′. We thus have that f ′(K) consists precisely of all expressions of the
form gih where

i ∈ {1,2, . . . , ∣K ∣}

and h ∈ H. We thus have that f ′(K) ⊆ G. We know that K ≤ G/H, so gi1Hgi2H = gi1gi2H ∈ K for all
indices i1 and i2. So given elements h1, h2 ∈H, we have that

gi1h1gi2h2 = gi3h3

for some index i3 ∈ {1,2, . . . , ∣K ∣} and some element h3 ∈ H. We thus have that f ′(K) is closed under
the underlying binary operation of G. Similarly, given an index

i1 ∈ {1,2, . . . , ∣K ∣} ,

and letting h1 ∈H, since K ≤ G/H, we have that

(gi1H)−1 = gi2H ∈K

for some index
i2 ∈ {1,2, . . . , ∣K ∣} ,

so
gi1h1 = gi2h2

for some h2 ∈H, thus proving that f ′(K) ≤ G.

Since K ≤ G/H, we have that eH = H ∈ K. So it is clear that H ⊆ f ′(K) ≤ G. Since H ≤ G, we have
that H ≤ f ′(K) ≤ G. Given an element

gih ∈ g(K)
where i ∈ {1,2, . . . , ∣K ∣} and h ∈H, since H ⊴ G, we have that

(gih)H =H(gih),

so it is clear that H ⊴ f ′(K) ≤ G. We thus have that f ′(K) ∈ cod(f ′), as desired, thus proving that f ′
is well-defined.

Since
f ∶ {K ∶H ⊴K ≤ G} → {K ∶K ≤ G/H}

and
f ′∶ {K ∶K ≤ G/H} → {K ∶H ⊴K ≤ G}
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are both well-defined, we may thus consider the composition

f ○ f ′∶ {K ∶K ≤ G/H} → {K ∶K ≤ G/H}.

Let K be an element in the domain of f ′. As above, write:

K = {g1H,g2H, . . . , g∣K∣H} ≤ G/H,

where g1, g2, . . . , g∣K∣ ∈ G. Now evaluate the expression (f ○ f ′)(K) in the following manner:

(f ○ f ′)(K) = f(f ′(K))

= f
⎛
⎝

∣K∣
⋃
i=1
giH

⎞
⎠

= π
⎛
⎝

∣K∣
⋃
i=1
giH

⎞
⎠

= π (g1H ⊎ g2H ⊎⋯ ⊎ g∣K∣H)

= π (g1H) ⊎ π (g2H) ⊎⋯ ⊎ π (g∣K∣H)

= π ({g1h ∶ h ∈H}) ⊎ π ({g2h ∶ h ∈H}) ⊎⋯ ⊎ π ({g∣K∣h ∶ h ∈H})

= {g1hH ∶ h ∈H} ⊎ {g2hH ∶ h ∈H} ⊎⋯ ⊎ {g∣K∣hH ∶ h ∈H}

= {g1H} ⊎ {g2H} ⊎⋯ ⊎ {g∣K∣H}

= {g1H,g2H, . . . , g∣K∣H}
=K.

Conversely, consider the composition

f ′ ○ f ∶ {K ∶H ⊴K ≤ G} → {K ∶H ⊴K ≤ G}.

Now, let K be such that H ⊴K ≤ G, those that K is an arbitrary element in the domain of the product
f ′ ○ f . Since H ⊴K, we have that K/H forms a group. Write

K/H = {k1H,k2H, . . . , knH}

letting n ∈ N. Now evaluate the expression (f ′ ○ f)(K) as follows.

(f ′ ○ f)(K) = f ′(f(K))
= f ′(π(K))
= f ′ ({kH ∶ k ∈K})
= f ′ ({k1H,k2H, . . . , knH})

=
n

⋃
i=1
kiH

=K.
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We thus have that f and f ′ are inverses of one another. This essentially proves that f is bijective, which
proves that

{K ∶H ⊴K ≤ G}
and

{K ∶K ≤ G/H}
are bijectively equivalent, as desired. More explicitly, for elements x1, x2 ∈ dom(f), we have that:

f (x1) = f (x2) Ô⇒ f ′(f (x1)) = f ′(f (x2))
Ô⇒ (f ′ ○ f)(x1) = (f ′ ○ f)(x2)
Ô⇒ x1 = x2.

We thus have that f is injective. Somewhat similarly, letting y ∈ cod(f), we have that:

y ∈ cod(f) Ô⇒ y ∈ dom(f ′)
Ô⇒ f ′(y) ∈ cod(f ′)
Ô⇒ f ′(y) ∈ dom(f)
Ô⇒ ∃z ∈ dom(f) z = f ′(y)
Ô⇒ ∃z ∈ dom(f) f(z) = f(f ′(y))
Ô⇒ ∃z ∈ dom(f) f(z) = (f ○ f ′)(y)
Ô⇒ ∃z ∈ dom(f) f(z) = y.

We thus have that f is surjective, as desired.

We apply a similar strategy to show that {K ∶H ⊴K ⊴ G} and {K ∶K ⊴ G/H} are bijectively equivalent.

We have already shown that

f ∶ {K ∶H ⊴K ≤ G} → {K ∶K ≤ G/H}

is bijective. Now, observe that the set
{K ∶H ⊴K ≤ G}

is contained in the set
{K ∶H ⊴K ⊴ G}.

Similarly, the set
{K ∶K ≤ G/H}

is contained in the set
{K ∶K ⊴ G/H}.

Now, let f denote the mapping obtained by restricting the domain of f to {K ∶ H ⊴ K ⊴ G}. Since f is
injective, we have that f is injective. Now, let K be such that H ⊴ K ⊴ G. Since H ⊴ K ≤ G, we have
that π(K) ≤ G/H, since f is well-defined. We claim that π(K) ⊴ G/H. We know that gK = Kg for all
g ∈ G. It remains to prove that

(gH){kH ∶ k ∈K} = {kH ∶ k ∈K}(gH)

for all g ∈ G. Since
(gH){kH ∶ k ∈K} = {gHkH ∶ k ∈K} = {(gk)H ∶ k ∈K},
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and since gK =Kg for all g ∈ G, we have that

(gH){kH ∶ k ∈K} = {(kg)H ∶ k ∈K} = {kHgH ∶ k ∈K} = {kH ∶ k ∈K}(gH),

thus proving that π(K) ⊴ G/H, as desired. So, we know that the mapping

f = f ∣
{K ∶H⊴K⊴G}

∶ {K ∶H ⊴K ⊴ G} → {K ∶K ≤ G/H}

obtained by restricting the domain of f to the subset

{K ∶H ⊴K ⊴ G} ⊆ {K ∶H ⊴K ≤ G}

is injective. But furthermore, we have shown that if K is such that H ⊴ K ⊴ G, then f(K) ⊴ G/H.
That is,

K ∈ dom(f) Ô⇒ f(K) ∈ {K ∶K ⊴ G/H}.
We thus have that the image of f is contained in {K ∶K ⊴ G/H}. Now let

g∶ {K ∶H ⊴K ⊴ G} → {K ∶K ⊴ G/H}

denote the mapping obtained by restricting the codomain of f to {K ∶ K ⊴ G/H}. Since f is injective,
we have that g is injective. We claim that g is also surjective. Let

{k1, k2, . . . , kn} ⊆ G

be such that
{k1H,k2H, . . . , knH} ⊴ G/H,

so that the collection {k1H,k2H, . . . , knH} is an arbitrary element in the codomain of g. Consider the
union

n

⋃
i=1
kiH ⊆ G.

Given two elements ki1h1 and ki2h2 in the above union, since

ki1Hki2H = ki1ki2H

we have that
ki1h1ki2h2 = ki1ki2h3 ∈

n

⋃
i=1
kiH

for some element h3 ∈ H. We thus have that ⋃ni=1 kiH is closed with respect to the underlying multi-
plicative binary operation of G. Similarly, since

(ki1H)−1 = ki4H

for some index i4, it is clear that
n

⋃
i=1
kiH ≤ G.

But since H is also a subgroup of G, it is clear that:

H ≤
n

⋃
i=1
kiH ≤ G.
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Since
{k1H,k2H, . . . , knH} ⊴ G/H,

we have that
gH{k1H,k2H, . . . , knH} = {k1H,k2H, . . . , knH}gH

for all g ∈ G. To prove that
n

⋃
i=1
kiH ⊴ G,

it remains to prove that

g
n

⋃
i=1
kiH = (

n

⋃
i=1
kiH) g

for all g ∈ G. Let g ∈ G be arbitrary. Letting gki1h1 be an arbitrary element in g⋃ni=1 kiH, since

gHki1H = ki2HgH = (ki2H)(Hg) = ki2Hg,

we have that

g
n

⋃
i=1
kiH ⊆ (

n

⋃
i=1
kiH) g,

and a symmetric argument may be used to prove the reverse inclusion. Similarly, it is clear that

H ⊴
n

⋃
i=1
kiH,

since ki1h1H =Hki1h1 since H ⊴ G. So, we have thus far shown that

H ⊴
n

⋃
i=1
kiH ⊴ G.

So, given that
{k1H,k2H, . . . , knH} ⊴ G/H,

we have that:
n

⋃
i=1
kiH ∈ dom(g).

Now evaluate the expression

g(
n

⋃
i=1
kiH)

as follows:

g(
n

⋃
i=1
kiH) = π (

n

⋃
i=1
kiH)

= {kihH ∶ i ∈ {1,2, . . . , n}, h ∈H}
= {kiH ∶ i ∈ {1,2, . . . , n}}
= {k1H,k2H, . . . , knH} ⊴ G/H.

We thus have that the mapping

g∶ {K ∶H ⊴K ⊴ G} → {K ∶K ⊴ G/H}

is bijective, thus completing our proof.
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Exercise 1.43. Recall that An is simple for n ≥ 5. However, it is not true that A4 is a simple group.
Prove that A4 is not a simple group using a counterexample, and write out all 12 elements in A4.

Solution 1.44. We defined the alternating group An using permutation matrices in class. This group
also may be defined as the group under composition consisting of all even permutations in Sn. With
respect to the definition of An given in class, we have that An consists precisely of the following 12
matrices:

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

We claim that there is a normal subgroup of A4 which is isomorphic to the Klein four-group C2 × C2.
Consider the following multiplication table.
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Let H denote the subset of A4 consisting of the matrices illustrated in the above multiplication table.
From the above multiplication table, it is clear that H forms a subgroup of A4, and that H is isomorphic
to the Klein four-group C2 ×C2.

Our strategy to prove that H ⊴ A4 is simply to use a “brute-force” computational approach, by com-
putationally verifying that aH = Ha for a ∈ A4. A Mathematica program which may be used for these
computations is illustrated below.

row1 = {1, 0, 0, 0} ;
row2 = {0, 1, 0, 0} ;
row3 = {0, 0, 1, 0} ;
row4 = {0, 0, 0, 1} ;
rowlist = {row1, row2, row3, row4} ;

permutation = Permutations[{1, 2, 3, 4}][[24]] ;

testmatrix1 = {rowlist[[permutation[[1]]]],
rowlist[[permutation[[2]]]], rowlist[[permutation[[3]]]],
rowlist[[permutation[[4]]]]} ;

groupelement1 = {rowlist[[1]], rowlist[[2]], rowlist[[3]],
rowlist[[4]]} ;

groupelement2 = {rowlist[[2]], rowlist[[1]], rowlist[[4]],
rowlist[[3]]} ;

groupelement3 = {rowlist[[3]], rowlist[[4]], rowlist[[1]],
rowlist[[2]]} ;

groupelement4 = {rowlist[[4]], rowlist[[3]], rowlist[[2]],
rowlist[[1]]} ;

Print[Sort[{testmatrix1.groupelement1 // MatrixForm,
testmatrix1.groupelement2 // MatrixForm,
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testmatrix1.groupelement3 // MatrixForm,
testmatrix1.groupelement4 // MatrixForm}]] ;

Print[Sort[{groupelement1.testmatrix1 // MatrixForm,
groupelement2.testmatrix1 // MatrixForm,
groupelement3.testmatrix1 // MatrixForm,
groupelement4.testmatrix1 // MatrixForm}]] ;

If[Signature[permutation] == 1,
Print[Sort[{testmatrix1.groupelement1, testmatrix1.groupelement2,
testmatrix1.groupelement3, testmatrix1.groupelement4}] ==
Sort[{groupelement1.testmatrix1, groupelement2.testmatrix1,
groupelement3.testmatrix1, groupelement4.testmatrix1}]] ;,
Print["The given permutation must be even."]]

Using the above program, we obtain the following computational results which show that ∀a ∈ A aH =
Ha.

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
=
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
=
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
H =H

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Exercise 1.45. Let G be a group, and suppose that there exists a nontrivial proper normal subgroup
N of G. So, there is a composition series for N and G/N , as illustrated below:

{1} =H0 ⊴H1 ⊴ ⋯ ⊴H` = N ⊴ H`+1 ⊴ H`+2 ⊴ ⋯ ⊴ G
↕ ↕ ↕ ↕

N/N ⊴ H`+1 ⊴ H`+2 ⊴ ⋯ ⊴ G/N

By the fourth isomorphism theorem, we have that there is a bijection between the set of expressions of
the form H`+i ⊴ G/N and the set of expressions of the form H`+i ⊴ G. If H`+i ⊴ G/N , then H`+i ⊴ G.
Check that since H`+i ⊴H`+i+1 then H`+i ⊴H`+i+1.

Solution 1.46. We know that the canonical projection morphism

π∶G→ G/N

whereby
g ↦ gN
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induces the bijection indicated below:

{K ∶ N ⊴K ⊴ G} ←→ {K ∶K ⊴ G/N}.

Now suppose that H`+i ⊴H`+i+1 ⊴ G/N . Write

H`+i = {g1N,g2N, . . . , gnN}.

Note that cosets of N must all be of the same cardinality. Write:

H`+i+1 = {h1N,h2N, . . . , hnN}.

We thus have that
H`+i =

n

⋃
i=1
giN

and
H`+i+1 =

n

⋃
i=1
hiN,

since the projection morphism π induces bijections according according to the Fourth Isomorphism
Theorem. Since

H`+i ⊴H`+i+1,

we have that
hiN{g1N,g2N, . . . , gnN} = {g1N,g2N, . . . , gnN}hiN

for all indices i. So, given an element

hi1n1 ∈ hi1N ⊆H`+i+1

and an element
gi2n2 ∈ gi2N ⊆H`+i,

we have that
hi1n1gi2n2 ∈ hi1n1H`+i,

i.e., hi1n1gi2n2 is an arbitrary element in hi1n1H`+i. But since

hiN{g1N,g2N, . . . , gnN} = {g1N,g2N, . . . , gnN}hiN

for all indices i, we have that
hi1n1gi2n2 = gi3n3hi1n4

for some index i3, and some elements n3, n4 ∈ N . Rewrite this equality as

hi1n1gi2n2 = gi3n3hi1n1n
−1
1 n4.

Since N ⊴ G, we have that
hi1n1gi2n2 = gi3n3n5hi1n1

for some n5 ∈ N , and we thus have that

(hi1n1)gi2n2 = gi3n6(hi1n1)
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for some n6 ∈ N . So, for an arbitrary element

hi1n1gi2n2 ∈ (hi1n1)H`+i,

we thus have that
(hi1n1)gi2n2 = gi3n6(hi1n1) ∈H`+i(hi1n1),

thus proving the inclusion whereby

(hi1n1)H`+i ⊆H`+i(hi1n1).

A symmetric argument may be used to prove the reverse inclusion, in order to prove that H`+i ⊴H`+i+1.

Exercise 1.47. State the Jordan-Hölder theorem, and write a sketch of a proof of this theorem, by
filling in the details of the proof sketch of this theorem given in class.

Solution 1.48. The Jordan-Hölder theorem states that any two composition series of a given group are
equivalent in the sense that they have the same composition length and the same composition factors,
up to permutation and isomorphism. Recall that a subnormal series of a group G is a finite sequence of
the following form:

{e} =H0 ⊴H1 ⊴ ⋯ ⊴Hn = G.
Recall that a subnormal series

{e} =H0 ⊴H1 ⊴ ⋯ ⊴Hn = G.
of a group G is a composition series if all the factor groups Hi+1/Hi are simple.

Letting G be a finite group, assume that there are two composition series for G:

{1} = N0 ⊴ N1 ⊴ ⋯ ⊴ Nk ⊴ Nk+1

=
G

=

{1} =M0 ⊴ M1 ⊴ ⋯ ⊴ M` ⊴ M`+1

We want to show that the above composition factors are permuted. We may assume without loss of
generality that M` ≠ Nk. To prove that the composition factors given by each of the above series are
permutations of each other, we make use of an inductive approach, illustrated by the following diagram.
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We need to verify that Nk ∩M` ⊴ Nk and that Nk ∩M` ⊴M`.

To verify this, we apply the Second Isomorphism Theorem.

Recall that the Second Isomorphism Theorem may be formulated in the following manner.

The Second Isomorphism Theorem: Let G be a group, and let H,K ≤ G be such that H ≤ NG(K). Then
H ∩K ⊴H, and HK/K ≅H/(H ∩K).

By the Second Isomorphism Theorem, since Nk,M` ≤ G, to prove that Nk ∩M` ⊴ Nk, it suffices to prove
that Nk ≤ NG(M`), i.e.,

Nk ≤ {g ∈ G ∶ gM` =M`g}.
But since M` ⊴ G, we have that

∀g ∈ G gM` =M`g,

and we thus have that
NG(M`) = {g ∈ G ∶ gM` =M`g} = G,

so since Nk ≤ G, we thus have that Nk ≤ NG(M`), as desired. An identical argument may be used to
prove that Nk ∩M` ⊴M`.

So, by the Second Isomorphism Theorem, we have that:

Nk/(Nk ∩M`) ≅ NkM`/M`.

We need to show that:

(i) NkM` forms a subgroup;

(ii) NkM` is normal in G; and

(iii) NkM` contains Nk and M`.

To show that NkM` forms a subgroup, we begin by letting n1, n2 ∈ Nk and m1,m2 ∈ M`, so that n1m1

and n2m2 are arbitrary elements in NkM`. Now consider the following expression:

n1m1n2m2.

Since Nk ⊴ G, we have that
m1Nk = Nkm1,

and we thus have that
n1n3m1m2 ∈ NkM`,

for some n3 ∈ Nk, thus proving that NkM` is closed with respect to the underlying binary operation of
G. Similarly, since

(n1m1)−1 =m−1
1 n

−1
1 ,

and since Nk ⊴ G, we have that
(n1m1)−1 = n4m

−1
1

for some n4 ∈ N , thus proving that NkM` is closed under inverses. We thus have that NkM` ≤ G, as
desired.
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Now, let g ∈ G be arbitrary. Again let n1 ∈ Nk and m1 ∈M`, and consider the following expression:

gn1m1 ∈ gNkM`.

Since Nk ⊴ G, we have that
gn1m1 = n2gm1.

Since M` ⊴ G, we have that
gn1m1 = n2m2g ∈ NkM`g

for some m2 ∈M`, thus proving the inclusion whereby

gNkM` ⊆ NkM`g.

A symmetric argument may be used to prove the reverse inclusion, in order to prove that NkM` ⊴ G. It
is obvious that the product NkM` contains both Nk and M`, since expressions of the form eNkm are in
NkM` for m ∈M`, and expressions of the form n ⋅ eM`

are in NkM` for n ∈ Nk.

Since NkM` ⊴ G, and since NkM` contains both Nk andM`, we thus arrive at the subnormal series given
below:

Nk ⊴ NkM` ⊴ G
M` ⊴ NkM` ⊴ G.

But recall that the subnormal series

{1} = N0 ⊴ N1 ⊴ ⋯ ⊴ Nk ⊴ Nk+1 = G

is, in fact, a composition series. We thus have that the quotient group G/Nk is simple. From the
subnormal series

Nk ⊴ NkM` ⊴ G,
we are thus lead to consider the following quotient groups: Nk/Nk, NkM`/Nk, and G/Nk. By the Fourth
Isomorphism Theorem, we know that there exists a bijection between normal subgroups of G containing
Nk and normal subgroups of G/Nk.

But G/Nk is simple. Since
NkM`/Nk ⊴ G/Nk,

we have that NkM`/Nk is either trivial or is equal to G/Nk. By the fourth isomorphism theorem, NkM`

is either equal to G or Nk. Since Nk ≠M` by assumption, we have that NkM` = G.

Using the Second Isomorphism Theorem, we have shown that

Nk/(Nk ∩M`) ≅ NkM`/M`.

We thus have that:
Nk/(Nk ∩M`) ≅ G/M`.

A symmetric argument shows that:
M`/(Nk ∩M`) ≅ G/Nk.

Inductively, this effectively completes our proof.
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Exercise 1.49. Prove that for abelian groups, the composition series is such that the quotient between
consecutive terms is given by a prime order.

Solution 1.50. Let G be an abelian group, and let x ∈ G. Let x ≠ e be of order n. If n is not prime
then xn/p is of order p. We thus have that there exists a subgroup of G of order p. Let

{⟨xn/p⟩} =H0 ⊴H1 ⊴ ⋯ ⊴Hn = G/⟨xn/p⟩

be a composition series for G/⟨xn/p⟩. Inductively, we may assume that the composition factors in the
above composition series are all of prime order. By the Fourth Isomorphism Theorem, we know that
there is a bijection of the form

{K ∶K ⊴ G/⟨xn/p⟩} ←→ {K ∶ ⟨xn/p⟩ ⊴K ⊴ G}

so there exists a composition series for G of the form

H0 ⊴H1 ⊴ ⋯ ⊴Hn = G.

But since H i+1/H i ≅ Hi+1/Hi for all indices i, we have that all of the composition factors in the above
composition series are all of prime order.

Exercise 1.51. There are 5 groups of order 8 = 23. Find all the possible composition series.

Solution 1.52. Recall that a subnormal series of a group G is a finite sequence of the form

{e} =H0 ⊴H1 ⊴ ⋯ ⊴Hn = G.

Recall that a subnormal series
{e} =H0 ⊴H1 ⊴ ⋯ ⊴Hn = G

is a composition series if each factor group of the form Hi+1/Hi is simple. Also recall that a group is
simple if it is nontrivial and has no proper nontrivial normal subgroups. Also recall that a finite simple
abelian group is necessarily isomorphic to Z/pZ for some prime p.

Begin by considering a composition series for Z/8Z. Given a subgroup H of Z/8Z, we have that
(Z/8Z)/H is simple if and only if it is of prime order. So it is clear that (Z/8Z)/H is simple if and only
if it is of order 2. We thus have that the latter part of a composition series for Z/8Z must be of the form

{0,2,4,6} ⊴ Z/8Z.

Similarly, since a finite simple abelian group must be isomorphic to a group of the form Z/pZ for a
prime p, we thus find that a composition series for Z/8Z must be of the following form:

{0} ⊴ {0,2} ⊴ {0,2,4,6} ⊴ Z/8Z.

Now consider a composition series for (Z/2Z)×(Z/4Z). Given a subgroup H of this group, we know that
((Z/2Z)× (Z/4Z))/H is simple if and only if it is of prime order. In particular, ((Z/2Z)× (Z/4Z))/H is
simple if and only if it is of order 2. Now observe that the direct product (Z/2Z)× (Z/4Z) has precisely
three subgroups of order 4:

{(0,0), (0,1), (0,2), (0,3)} ⊴ (Z/2Z) × (Z/4Z),
{(0,0), (1,1), (0,2), (1,3)} ⊴ (Z/2Z) × (Z/4Z),
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{(0,0), (0,2), (1,0), (1,2)} ⊴ (Z/2Z) × (Z/4Z).

We thus arrive at the following compositions series:

{(0,0)} ⊴ {(0,0), (0,2)} ⊴ {(0,0), (0,1), (0,2), (0,3)} ⊴ (Z/2Z) × (Z/4Z)
{(0,0)} ⊴ {(0,0), (0,2)} ⊴ {(0,0), (1,1), (0,2), (1,3)} ⊴ (Z/2Z) × (Z/4Z)
{(0,0)} ⊴ {(0,0), (0,2)} ⊴ {(0,0), (0,2), (1,0), (1,2)} ⊴ (Z/2Z) × (Z/4Z)
{(0,0)} ⊴ {(0,0), (1,0)} ⊴ {(0,0), (0,2), (1,0), (1,2)} ⊴ (Z/2Z) × (Z/4Z)
{(0,0)} ⊴ {(0,0), (1,2)} ⊴ {(0,0), (0,2), (1,0), (1,2)} ⊴ (Z/2Z) × (Z/4Z).

Now consider a composition series for (Z/2Z) × (Z/2Z) × (Z/2Z). There are several subgroups of order
4 of (Z/2Z) × (Z/2Z) × (Z/2Z), namely:

{(0,0,0), (0,0,1), (0,1,0), (0,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (0,0,1), (1,0,0), (1,0,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (0,0,1), (1,1,0), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (0,1,0), (1,0,0), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (0,1,0), (1,0,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (1,0,0), (0,1,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0), (0,1,1), (1,0,1), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)

We thus arrive at the following composition series:

{(0,0,0)} ⊴ {(0,0,0), (0,0,1)} ⊴ {(0,0,0), (0,0,1), (0,1,0), (0,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,0)} ⊴ {(0,0,0), (0,0,1), (0,1,0), (0,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,1)} ⊴ {(0,0,0), (0,0,1), (0,1,0), (0,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,0,1)} ⊴ {(0,0,0), (0,0,1), (1,0,0), (1,0,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,0,0)} ⊴ {(0,0,0), (0,0,1), (1,0,0), (1,0,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,0,1)} ⊴ {(0,0,0), (0,0,1), (1,0,0), (1,0,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,0,1)} ⊴ {(0,0,0), (0,0,1), (1,1,0), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,0)} ⊴ {(0,0,0), (0,0,1), (1,1,0), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,1)} ⊴ {(0,0,0), (0,0,1), (1,1,0), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,0)} ⊴ {(0,0,0), (0,1,0), (1,0,0), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,0,0)} ⊴ {(0,0,0), (0,1,0), (1,0,0), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,0)} ⊴ {(0,0,0), (0,1,0), (1,0,0), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,0)} ⊴ {(0,0,0), (0,1,0), (1,0,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,0,1)} ⊴ {(0,0,0), (0,1,0), (1,0,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,1)} ⊴ {(0,0,0), (0,1,0), (1,0,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,0,0)} ⊴ {(0,0,0), (1,0,0), (0,1,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,1)} ⊴ {(0,0,0), (1,0,0), (0,1,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,1)} ⊴ {(0,0,0), (1,0,0), (0,1,1), (1,1,1)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (0,1,1)} ⊴ {(0,0,0), (0,1,1), (1,0,1), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
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{(0,0,0)} ⊴ {(0,0,0), (1,0,1)} ⊴ {(0,0,0), (0,1,1), (1,0,1), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z)
{(0,0,0)} ⊴ {(0,0,0), (1,1,0)} ⊴ {(0,0,0), (0,1,1), (1,0,1), (1,1,0)} ⊴ (Z/2Z) × (Z/2Z) × (Z/2Z).

Now consider composition series for the following dihedral group:

D4 = {1, a, a2, a3, b, ba, ba2, ba3}.

It is easily seen that there are precisely three different subgroups of order 4 of D4, namely:

{1, a, a2, a3} ⊴D4

{1, a2, b, ba2} ⊴D4

{1, a2, ba, ba3} ⊴D4.

It is clear that the set {1, a, a2, a3} of rotational isometries forms a subgroup of D4. It may be less
clear as to why {1, a2, b, ba2} forms a subgroup, or why {1, a2, ba, ba3} forms a subgroup. To illustrate
why {1, a2, b, ba2} and {1, a2, ba, ba3} both form subgroups, we evaluate the Cayley tables for both
{1, a2, b, ba2} and {1, a2, ba, ba3}, using the dihedral relations whereby a4 = b2 = (ab)2 = 1. We remark
that from these relations, we have that ab = ba3, since:

b2 = (ab)2Ô⇒ bb = abab
Ô⇒ b = aba
Ô⇒ ba3 = ab.

○ 1 a2 b ba2

1 1 a2 b ba2

a2 a2 1 ba2 b
b b ba2 1 a2

ba2 ba2 b a2 1

Entries in the above Cayley table may be evaluated using dihedral relations in the manner illustrated
below.

a2b = aab
= a(ab)
= a(ba3)
= (ab)a3

= (ba3)a3

= ba6

= ba2.

a2ba2 = ba2a2

= b.

ba2ba2 = baabaa
= ba(ab)aa
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= ba(ba3)aa
= baba
= b(ab)a
= b(ba3)a
= b2a4

= 1.

○ 1 a2 ba ba3

1 1 a2 ba ba3

a2 a2 1 ba3 ba
ba ba ba3 1 a2

ba3 ba3 ba a2 1

Entries in the above Cayley table may be evaluated using dihedral relations in the manner illustrated
below.

a2ba = aaba
= a(ab)a
= a(ba3)a
= aba4

= ab
= ba3.

baba = b(ab)a
= b(ba3)a
= 1.

So, since {1, a, a2, a3}, {1, a2, b, ba2}, and {1, a2, ba, ba3} are the only subgroups of D4 of order 4, it is
easily seen that the only possible composition series for the dihedral group of order 8 are the subnormal
series given below:

{1} ⊴ {1, a2} ⊴ {1, a, a2, a3} ⊴D4

{1} ⊴ {1, a2} ⊴ {1, a2, b, ba2} ⊴D4

{1} ⊴ {1, b} ⊴ {1, a2, b, ba2} ⊴D4

{1} ⊴ {1, ba2} ⊴ {1, a2, b, ba2} ⊴D4

{1} ⊴ {1, a2} ⊴ {1, a2, ba, ba3} ⊴D4

{1} ⊴ {1, ba} ⊴ {1, a2, ba, ba3} ⊴D4

{1} ⊴ {1, ba3} ⊴ {1, a2, ba, ba3} ⊴D4.

So, it remains to consider composition series for the quaternion group. Recall that the quaternion group
is an 8-element group on the set

{1,−1, i,−i, j,−j, k,−k}
with a presentation of the following form:

⟨i, j, k ∣ i2 = j2 = k2 = ijk = −1⟩.
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It is known that there are precisely 3 subgroups of order 4 of Q8, namely the subgroups given below,
which are all isomorphic to the cyclic group Z/4Z1 It is also known that all of these subgroups of order
4 are normal.

{1, i,−1,−i} ⊴ Q8

{1, j,−1,−j} ⊴ Q8

{1, k,−1,−k} ⊴ Q8.

We thus find that the only composition series for the quaternion group are the following series:

{1} ⊴ {1,−1} ⊴ {1, i,−1,−i} ⊴ Q8

{1} ⊴ {1,−1} ⊴ {1, j,−1,−j} ⊴ Q8

{1} ⊴ {1,−1} ⊴ {1, k,−1,−k} ⊴ Q8.

Exercise 1.53. Let A and B be groups, and for b ∈ B, let φb be an automorphism of A, so that

φ∶B → Aut(A)

is a group homomorphism. Define A ⋊φ B as the set

{(a, b) ∶ a ∈ A, b ∈ B}

endowed with the binary operation ○A⋊φB on A ⋊φ B whereby

(a, b) ○A⋊φB (a′, b′) = (aφb(a′), b(b′))

for a, a′ ∈ A and b, b′ ∈ B. Show that A⋊B forms a group, and show that A⋊φB = A×B if φb(a) = a for
all b ∈ B, i.e. φb is the identity automorphism on A for all b ∈ B.

Solution 1.54. Let a1, a2 ∈ A and let b1, b2 ∈ B. By definition of the operation ○ = ○A⋊φB, we have that

(a, b) ○A⋊φB (a′, b′) = (aφb(a′), b(b′)),

and since
φb∶A→ A

must be an automorphism of A for b ∈ B, we thus find that

(a, b) ○A⋊φB (a′, b′) = (aφb(a′), b(b′)) ∈ {(a, b) ∶ a ∈ A, b ∈ B}

for a, a′ ∈ A and b, b′ ∈ B, thus proving that ○A⋊φB is a binary operation on {(a, b) ∶ a ∈ A, b ∈ B}.
We claim that this binary operation is associative. To prove this, begin by letting a1, a2, a3 ∈ A and
b1, b2, b3 ∈ B. Evaluate the product (a1, b1) ○ ((a2, b2) ○ (a3, b3)):

(a1, b1) ○ ((a2, b2) ○ (a3, b3)) = (a1, b1) ○ (a2φb2(a3), b2b3)
= (a1φb1(a2φb2(a3)), b1(b2b3)) .

Now evaluate the product ((a1, b1) ○ (a2, b2)) ○ (a3, b3):

((a1, b1) ○ (a2, b2)) ○ (a3, b3) = (a1φb1(a2), b1b2) ○ (a3, b3)
1See http://groupprops.subwiki.org/wiki/Subgroup_structure_of_quaternion_group.
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= (a1φb1(a2)φb1b2(a3), (b1b2)b3) .

Now recall that
φ∶B → Aut(A)

is a group homomorphism. Also observe that φb is a group homomorphism for all b ∈ B. We thus find
that the product (a1, b1) ○ ((a2, b2) ○ (a3, b3)) may be rewritten in the following manner, making use of
the associativity of the underlying binary operation of B:

(a1, b1) ○ ((a2, b2) ○ (a3, b3)) = (a1, b1) ○ (a2φb2(a3), b2b3)
= (a1φb1(a2φb2(a3)), b1(b2b3))
= (a1φb1(a2φb2(a3)), (b1b2)b3)
= (a1φb1(a2)φb1(φb2(a3)), (b1b2)b3)
= (a1φb1(a2)φb1b2(a3), (b1b2)b3) .

We thus find that
(a1, b1) ○ ((a2, b2) ○ (a3, b3)) = ((a1, b1) ○ (a2, b2)) ○ (a3, b3)

for a1, a2, a3 ∈ A and b1, b2, b3 ∈ B. We have thus far shown that the operation ○A⋊φB is an associative
binary operation on the set {(a, b) ∶ a ∈ A, b ∈ B}. In other words, we have that the collection of all
pairs of the form (a, b) for a ∈ A and b ∈ B forms a semigroup. Recall that a semigroup is an algebraic
structure consisting of a set together with an assocaitive binary operation 2.

Now, let eA and eB respectively denote the identity elements for A and B. Consider the ordered pair
(eA, eB) in the codomain of the binary operation ○ = ○A⋊φB. Letting a ∈ A and b ∈ B be artbirary, observe
that φb(eA) = eA since φb must be an automorphism of A. Also observe that since

φ∶B → Aut(A)

is a group homomorphism, we have that

φeB = id = idAut(A) = eAut(A),

letting
id = idAut(A) = eAut(A)∶A→ A

denote the identity automorphism on A whereby

id(a) = a

for all a ∈ A. We thus have that:

(eA, eB) ○ (a, b) = (eAφeB(a), eBb)
= (eAφeB(a), b)
= (eAid(a), b)
= (eAa, b)
= (a, b).

2See https://en.wikipedia.org/wiki/Semigroup.
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Similarly, we have that:

(a, b) ○ (eA, eB) = (aφb(eA), b ⋅ eB)
= (aφb(eA), b)
= (a ⋅ eA, b)
= (a, b).

We thus have that the identity axiom holds with respect to the semigroup obtained by endowing the set
{(a, b) ∶ a ∈ A, b ∈ B} with the binary operation ○ = ○A⋊φB. In other words, the set {(a, b) ∶ a ∈ A, b ∈ B}
forms a monoid with respect to this binary operation. Recall that a monoid is an algebraic structure
with a single associative binary operation and an identity element 3. Again letting a ∈ A and b ∈ B be
arbitrary, let a−1 and b−1 respectively denote the inverses of a and b. We claim that the right inverse of
(a, b) is (φb−1(a−1), b−1):

(a, b) ○ (φb−1(a−1), b−1) = (aφb(φb−1(a−1)), b ⋅ b−1)
= (aφb(φb−1(a−1)), eB)
= (aφb⋅b−1(a−1), eB)
= (aφeB(a−1), eB)
= (a ⋅ id(a−1), eB)
= (a ⋅ a−1, eB)
= (eA, eB).

Similarly, we find that the left inverse of (a, b) is also equal to (φb−1(a−1), b−1):

(φb−1(a−1), b−1) ○ (a, b) = (φb−1(a−1)φb−1(a), b−1b)
= (φb−1(a−1)φb−1(a), eB)
= (φb−1(a−1a), eB)
= (φb−1(eA), eB)
= (eA, eB).

We thus find that the monoid obtained by endowing the set {(a, b) ∶ a ∈ A, b ∈ B} with the operation ○
forms a group.

Exercise 1.55. Construct morphisms α and β such that the sequence

{1} Ð→ A
αÐÐÐ→ A ⋊φ B

βÐÐÐ→ B Ð→ {1} .

is an exact sequence.

Solution 1.56. Recall that a sequence

G0
f1ÐÐÐ→ G1

f2ÐÐÐ→ G2
f3ÐÐÐ→ ⋯ fnÐÐÐ→ Gn

of groups and group homomorphisms is said to be exact if the image of each homomorphism is equal to
the kernel of the next, i.e.,

im(fi) = ker(fi+1)
3See https://en.wikipedia.org/wiki/Monoid.

39

https://en.wikipedia.org/wiki/Monoid


for all indices i4. It is natural to consider the mapping

α∶A→ A ⋊φ B

whereby
α(a) = (a, eB)

for all a ∈ A. Letting a1, a2 ∈ A, we have that:

α(a1) ⋅ α(a2) = (a1, eB) ⋅ (a2, eB)
= (a1φeB(a2), eBeB)
= (a1φeB(a2), eB)
= (a1id(a2), eB)
= (a1a2, eB)
= α(a1a2).

We thus have that α is a group homomorphism in this case. Observe that the image im(α) of the
morphism

α∶A→ A ⋊φ B
is the set of all expressions of the form (a, eB) where a ∈ A. Now define

β∶A ⋊φ B → B

so that
β(a, b) = b

for all a ∈ A and b ∈ B. Letting a1, a2 ∈ A and b1, b2 ∈ B, we have that:

β((a1, b1) ⋅ (a2, b2)) = β((a1φb1(a2), b1b2))
= b1b2
= β(a1, b1) ⋅ β(a2, b2).

Now observe that the kernel ker(β) of the morphism β is precisely the set of all expressions in A ⋊φ B
of the form (a, eB) for a ∈ A. So, we have that im(α) = ker(β), thus establishing an exact sequence of
the desired form.

Exercise 1.57. Letting G be a group of prime power order, with ∣G∣ = pa, prove that if H ≤ G, then
NG(H) ≠H.

Solution 1.58. Find a proper normal subgroup K ◁G and K ⊴ H such that K is maximal and that
G/K is not trivial. Since

K ⊴H ≤ G,
we have that

H/K ≤ G/K.
Now, since G is of prime power order, we have that the quotient group G/K is also of prime power
order. So the center Z(G/K) of G/K is nontrivial. So there exists a non-identity element zK in the
center Z(G/K) of G/K, with z ∉K since zK ≠ eK.

4See https://en.wikipedia.org/wiki/Exact_sequence.
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Now, observe that for h ∈H, we have that hK ∈H/K. Since

H/K ≤ G/K,
we are thus lead to consider the product

(zK)(hK) ∈ G/K.
Since z is in the center of G/K, we have that:

zhK = (zK)(hK) = (hK)(zK) = hzK ∈ G/K.
So, since

zhK = hzK ∈ G/K,
we have that

hK = z−1hzK.
Therefore,

z−1hz ∈ hK ⊆ hH =H.
But recall that h ∈H is arbitrary. We thus find that

zhz−1 ∈H
for all h ∈H. Since G is finite, we have that NG(H) =MG(H). So, we have shown that z ∈ NG(H).

But furthermore, we claim that z cannot be in H. By way of contradiction, suppose that z ∈ H. We
thus have that z ∉K and z ∈H. We claim that this contradicts the maximality of K.

To show this, let L denote the smallest subgroup of G containing z and containing the elements in
K. Since z ∉ K, we have that K ⊊ L. We have that L ≤ G by definition of L. Using the fact that
zK ∈ Z(G/K) together with the fact that K◁G, it is easily seen that each element in L must be of the
form znk for some k ∈K and some power zn of z. Letting g ∈ G, consider the coset Lg. Let znkg be an
element in this coset. But then this element is equal to

zngk′

for some k′ ∈K, and this element is equal to

gznk′′

for some k′′ ∈K, since powers of zK are also in the center of G/K. So we have shown that

(znk)g = g(znk′′)
for some element k′′ ∈K, thus proving the inclusion whereby

Lg ⊆ gL.
A symmetric argument may be used to prove the reverse inclusion. A similar argument may be used to
prove that L ⊴H. Observe that H < G. But since z ∈H by assumption, and since

K ≤H < G,
we have that

L ≤H < G,
which also shows that G/L is nontrivial. But this contradicts the maximality of K, thus proving that z
cannot be in H.
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Exercise 1.59. Illustrate Sylow’s theorems using the Sylow p-subgroups of S3.

Solution 1.60. The Sylow 2-subgroups of S3 are given below:

{(1 2 3
1 2 3

) ,(1 2 3
2 1 3

)} ≤ S3

{(1 2 3
1 2 3

) ,(1 2 3
1 3 2

)} ≤ S3

{(1 2 3
1 2 3

) ,(1 2 3
3 2 1

)} ≤ S3.

We thus have that n2 = 3. So, n2 ≥ 1, n2 divides the order ∣G∣ = 6 of G, and n2 ≡ 1(mod p). Also, all
Sylow 2-subgroups of S3 are conjugate, as illustrated below:

(1 2 3
2 3 1

){(1 2 3
1 2 3

) ,(1 2 3
2 1 3

)}(1 2 3
2 3 1

)
−1
= {(1 2 3

1 2 3
) ,(1 2 3

1 3 2
)}

(1 2 3
3 1 2

){(1 2 3
1 2 3

) ,(1 2 3
2 1 3

)}(1 2 3
3 1 2

)
−1
= {(1 2 3

1 2 3
) ,(1 2 3

3 2 1
)}

(1 2 3
2 3 1

){(1 2 3
1 2 3

) ,(1 2 3
1 3 2

)}(1 2 3
2 3 1

)
−1
= {(1 2 3

1 2 3
) ,(1 2 3

3 2 1
)} .

There is a unique Sylow 3-subgroup of S3, namely:

{(1 2 3
1 2 3

) ,(1 2 3
2 3 1

) ,(1 2 3
3 1 2

)} ≤ S3.

We thus have that n3 = 1. So n3 ≥ 1, n3 divides the order ∣G∣ = 6 of G, and n3 ≡ 1(mod3). Since there is
a unique Sylow 3-subgroup of S3, it is trivial that Sylow 3-subgroups of S3 are conjugate.

Exercise 1.61. Write in the details of the proofs of the Sylow theorems given in the handout5 from the
October 4th lecture

Solution 1.62. We begin with an expanded proof of the following result.

Proposition 1.63. Let G be a p-group acting on a (finite) set E. Then

∣E∣ ≡ ∣FixG(E)∣ (mod p) .

Proof. Since E is a G-set, we may write G as a disjoint union of orbits as follows, letting n ∈ N:

E = OrbitG(x1) ⊍OrbitG(x2) ⊍⋯ ⊍OrbitG(xn).

By the orbit-stabilizer theorem, we thus have that

∣E∣ =
n

∑
i=1

∣OrbitG(xi)∣ =
n

∑
i=1

∣G∣
∣StabG(xi)∣

.

5See http://garsia.math.yorku.ca/~zabrocki/math6121f16/documents/100616sylows.pdf.
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But since StabG(xi) is a subgroup of G, by Lagrange’s theorem, each expression of the form ∣G∣
∣StabG(xi)∣

must be of order pbi . Letting
●∶G ×E → E

denote the group action corresponding to the G-set E, recall that

Fix(g) = {x ∈ E ∶ g ● x = x}

for g ∈ G. Similarly, we define

FixG(E) = Fix(G) = {x ∈ E ∶ ∀g ∈ G g ● x = x}.

We claim that: Fix(G) = {xi ∶ 1 ≤ i ≤ n, bi = 0}. Equivalently: Fix(G) = {x ∈ E ∶ ∣G∣ = ∣StabG(x)∣}.
Equivalently:

Fix(G) = {x ∈ E ∶ G = StabG(x)} .
Our strategy to prove the above equality is to usemutual inclusion. Let y ∈ E be such that ∀g ∈ G g●y = y,
so that y ∈ Fix(G) is arbitrary. Given that ∀g ∈ G g ● y = y, consider the expression StabG(y). By
definition of the stabilizer of an element, we have that

Stab(y) = {g ∈ G ∶ g ● y = y},

but since ∀g ∈ G g ● y = y in this case, we have that Stab(y) = G. So, given y ∈ Fix(G), we thus have
that y ∈ {x ∈ E ∶ G = StabG(x)}, thus proving the desired inclusion whereby

Fix(G) ⊆ {x ∈ E ∶ G = StabG(x)}.

Conversely, let
y ∈ {x ∈ E ∶ G = StabG(x)}

be arbitrary. Since G = StabG(y), we have that G = {g ∈ G ∶ g ● y = y}, and we thus have that
∀g ∈ G g ● y = y. Since y ∈ E is such that ∀g ∈ G g ● y = y, we thus have that

y ∈ Fix(G) = {x ∈ E ∶ ∀g ∈ G g ● x = x} ,

thus proving that the reverse inclusion whereby

{x ∈ E ∶ G = StabG(x)} ⊆ Fix(G),

thus proving that Fix(G) = {xi ∶ 1 ≤ i ≤ n, bi = 0}.

Now, recall that

∣E∣ =
n

∑
i=1

∣G∣
∣StabG(xi)∣

,

by the orbit-stabilizer theorem. Rewrite this equality as follows:

∣E∣ =
n

∑
i=1

∣G∣
∣StabG(xi)∣

= ∑
1≤i≤n

∣StabG(xi)∣=∣G∣

∣G∣
∣StabG(xi)∣

+ ∑
1≤i≤n

∣StabG(xi)∣<∣G∣

∣G∣
∣StabG(xi)∣
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=
⎛
⎜⎜
⎝

∑
1≤i≤n

∣StabG(xi)∣=∣G∣

1

⎞
⎟⎟
⎠
+ ∑

1≤i≤n
∣StabG(xi)∣<∣G∣

∣G∣
∣StabG(xi)∣

=
⎛
⎜⎜
⎝

∑
1≤i≤n

StabG(xi)=G

1

⎞
⎟⎟
⎠
+ ∑

1≤i≤n
∣StabG(xi)∣<∣G∣

∣G∣
∣StabG(xi)∣

= ∣Fix(G)∣ + ∑
1≤i≤n

∣StabG(xi)∣<∣G∣

∣G∣
∣StabG(xi)∣

.

By Lagrange’s theorem, it is clear that each expression of the form

∣G∣
∣StabG(xi)∣

such that ∣StabG(xi)∣ < ∣G∣ vanishes modulo p, thus proving that

∣E∣ ≡ ∣Fix(G)∣ (mod p)

as desired.

Corollary 1.64. If p ∈ N is a prime, and m ∈ N is such that p does not divide m, then

(p
nm

pn
) ≡m (mod p) .

Proof. With respect to Proposition 1.63, let G be the cyclic group

Cpnm = Zpnm = Z/(pnm)Z.

Exercise: Prove that there exists a subgroup H ≤ G of order pn.

We begin by remarking that the result given in the above exercise follows immediately from the Fun-
damental Theorem of Cyclic Groups, which is formulated as follows in Joseph Gallian’s Contemporary
Abstract Algebra:

Fundamental Theorem of Cyclic Groups: “Every subgroup of a cyclic group is cyclic. Moreover, if
∣⟨a⟩∣ = n, then the order of any subgroup of ⟨a⟩ is a divisor of n; and, for each positive divisor k of n,
the group ⟨a⟩ has exactly one subgroup of order k – namely, ⟨an/k⟩.”

Letting 1 ∈ Z/(pnm)Z denote the coset 1+ (pnm)Z in the quotient group Z/(pnm)Z, we may thus write

⟨1⟩ = Zpnm.

Since pn divides pnm, by the Fundamental Theorem of Cyclic Groups, we thus have that the group ⟨1⟩ =
Zpnm has exactly one subgroup of order pn, namely ⟨m⟩. Without resorting to using the Fundamental
Theorem of Cyclic Groups, it is easily seen that ⟨m⟩ is a cyclic subgroup of ⟨m⟩ of order pn. In particular,
it is easily seen that

⟨m⟩ = {m,2m,3m, . . . , (pn − 1)m,0}
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since the expressions in
{m,2m,3m, . . . , (pn − 1),m}

do not vanish modulo pnm because p does not divide m by assumption, and since the elements in

⟨m⟩ = {m,2m,3m, . . . , (pn − 1),m,0}

must be pairwise unequal as is easily verified using our assumption that p does not divide m.

So, let H = ⟨m⟩. Let X be the set of subsets S ⊆ G such that ∣S∣ = pn. Note that ∣X ∣ = (pnm
pn

). Let H act
on X by left addition. Let

●∶H ×X →X

denote this action.

Exercise: Prove that S ∈ Fix(H) if and only if S is a left coset of H.

Suppose that S is a left coset of H. Let g ∈ G, and write S = {g + h ∶ h ∈ H}. Since H is a (normal)
subgroup of order pn, we have that g +H is also of order pn. We thus have that S ∈ X. Now let i ∈ H,
and consider the expression i ● S:

i ● S = i + S
= i + {g + h ∶ h ∈H}
= {i + g + h ∶ h ∈H}
= {g + i + h ∶ h ∈H}
= {g + j ∶ j ∈H}
= S.

We thus have that if S is a left coset of H, then S in the following set:

Fix(H) = {T ∈X ∶ ∀i ∈H i ● T = T}.

Conversely, suppose that:
S ∈ Fix(H) = {T ∈X ∶ ∀i ∈H i ● T = T}.

We thus have that:
∀i ∈H i ● S = S.

Therefore,
∀i ∈H i + S = S.

Write:
H = {h1, h2, . . . , hpn},

for the sake of convenience, and write:

S = {s1, s2, . . . , spn}.

Now let f ∶ {1,2, . . . , pn} → {1,2, . . . , pn} be a mapping defined as follows, using the fact that ∀i ∈H i+S =
S:

h1s1 = sf(1),
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h2s1 = sf(2),
⋯
hpns1 = sf(pn).

Letting i and j be elements in the domain of f , it is clear that f is injective, since:

f(i) = f(j) Ô⇒ sf(i) = sf(j)
Ô⇒ his1 = hjs1
Ô⇒ hi = hj
Ô⇒ i = j.

So, since f is an injective map from {1,2, . . . , pn} to {1,2, . . . , pn}, we may thus deduce that f is bijective.
Since f is bijective, it is thus clear that

s1 +H = S,
thus proving that S is a left coset of H.

So, we have shown that the set Fix(H) is precisely the set of left cosets of H. Now, by Lagrange’s
theorem, we have that the number of left cosets of H is m. So the above corollary thus follows from
Proposition 1.63.

Theorem 1.65. The center of a p-group G is nontrivial.

Proof. Let G act on itself by conjugation. In particular, let

●∶G ×G→ G

denote the action whereby
g ● h = ghg−1

for all g, h ∈ G. It is clear that ● is indeed a group action, since

e ● g = ege−1 = g

for g ∈ G, and since the following holds for g, h, i ∈ G:

(gh) ● i = (gh)i(gh)−1

= ghih−1g−1

= g(hih−1)g−1

= g(h ● i)g−1

= g ● (h ● i).

Exericse: Show that Fig(G) = Z(G) with respect to the conjugation action on G.

To show that Fix(G) = Z(G), rewrite the expression Fix(G) in the following manner:

Fix(G) = {i ∈ G ∶ ∀h ∈ G h ● i = i}
= {i ∈ G ∶ ∀h ∈ G hih−1 = i}
= {i ∈ G ∶ ∀h ∈ G hi = ih}
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= Z(G).

Now, by Proposition 1.63, we have that

∣G∣ ≡ ∣Fix(G)∣ (mod p),

and thus
∣G∣ ≡ ∣Z(G)∣ (mod p),

and thus
∣Z(G)∣ ≡ ∣G∣ (mod p).

We thus have that
∣Z(G)∣ ≡ 0(mod p),

thus proving that p divides the order of Z(G).

Theorem 1.66. (1st Sylow theorem): Sylow p-subgroups always exist.

Proof. Let X be the set of subsets of G of order pn and let G act on X by left multiplication. Let

●∶G ×X →X

denote the corresponding action whereby
g ● x = gx

for g ∈ G and x ∈ X. As above, let expressions of the form xi denote the representatives of the orbits.
Since ∣X ∣ = (pnm

pn
), as shown above, we have that ∣X ∣ ≡ m(mod p). So p does not divide ∣X ∣. So there

exists at least one expression of the form xi such that p does not divide ∣G∣
∣StabG(xi)∣ . Now, what is the order

of G? It should be clarified that the order ∣G∣ of G is such that p is a prime factor with multiplicity n of
∣G∣. Since the prime power pn divides ∣G∣ but pn+1 does not divide ∣G∣, and since ∣G∣

∣StabG(xi)∣ is a natural
number by Lagrange’s theorem, and since ∣G∣

∣StabG(xi)∣ is not divisible by p, we may deduce that pn divides
∣StabG(xi)∣. We remark that we are implicitly using the Fundamental Theorem of Arithmetic.

Exercise: Explain why ∣StabG(xi)∣ = ∣{zy ∶ z ∈ StabG(xi)}∣.

Letting y ∈ xi, to show that
∣StabG(xi)∣ = ∣{zy ∶ z ∈ StabG(xi)}∣ ,

begin by observing that StabG(xi) is a subgroup of G. Now consider the expression

{zy ∶ z ∈ StabG(xi)} .

It is clear that the above set is precisely the following right coset:

(StabG(xi)) y = {zy ∶ z ∈ StabG(xi)} .

From our previous proof of Lagrange’s theorem, which is available through the course webpage for
MATH 6121, we know that the order ∣StabG(xi)∣ of the subgroup StabG(xi) must be equal to the order
of the coset (StabG(xi)) y, thus proving that

∣StabG(xi)∣ = ∣{zy ∶ z ∈ StabG(xi)}∣ ,
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as desired.

Now by definition of the stabilizer of an element, we have that:

StabG(xi) = {g ∈ G ∶ g ● xi = xi} .

Denote xi as follows:
xi = {w1,w2, . . . ,wpn}.

Now, let z ∈ StabG(xi). We thus have that z ∈ G, and z ● xi = xi. Now consider the expression zy.
Since y ∈ xi, and since z ● xi = xi, we have that zy = y′ for some y′ ∈ xi. So, we have that the set of all
expressions of the form zy where z is in StabG(xi) is contained in xi. We thus have that

∣StabG(xi)∣ = ∣{zy ∶ z ∈ StabG(xi)}∣ ≤ ∣xi∣ ,

and we thus have that
∣StabG(xi)∣ ≤ pn.

But recall that we used Lagrange’s theorem to prove that pn divides the order of the subgroup StabG(xi).
We thus have that

∣StabG(xi)∣ ≥ pn,
thus proving that

∣StabG(xi)∣ = pn.
But recall that StabG(xi) forms a subgroup of G with respect to the underlying binary operation on G.
We thus have that StabG(xi) is a subgroup of G of order pn.

Recall that a finite group is a p-group iff its order is a power of p. Recall that a Sylow p-subgroup of G
is a maximal p-subgroup of G, i.e. a subgroup of G that is a p-group that is not a proper subgroup of
any other p-subgroup of G. As indicated above, the order ∣G∣ of G is such that p is a prime factor with
multiplicity n of ∣G∣. Therefore, since StabG(xi) is a subgroup of G of order pn, we have that StabG(xi)
must be a Sylow p-subgroup, because by Lagrange’s theorem, this subgroup cannot be properly contained
in any other p-subgroup of G, since the multiplicity of the prime factor p of ∣G∣ is n.

Theorem 1.67. (2nd Sylow theorems) All Sylow p-subgroups are conjugate to each other.

Proof. Let T and S be two subgroups of order pn. Observe that S ⊴ G. Let T act on the left cosets of
the quotient group G/S by left multiplication. Let

●∶T × (G/S) → G/S

denote the corresponding group action whereby

t ● (gS) = (tg)S

for t ∈ T and g ∈ G. Since T is a p-group, by Proposition 1.63, we have that

∣G/S∣ ≡ ∣FixT (G/S)∣ (mod p) .

Now recall that G is a p-group, such that the multiplicity of the prime p with respect to the prime
factorization of ∣G∣ is n. Since S is a Sylow p-subgroup, i.e., a maximal p-subgroup, it is clear that p
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does not divide the order ∣G/S∣ of the quotient group G/S. We may thus deduce that FixT (G/S) is
nonempty. So, let gS ∈ FixT (G/S).

Exericse: Show that if gS ∈ FixT (G/S), then T ⊆ gSg−1.

To show that
gS ∈ FixT (G/S) Ô⇒ T ⊆ gSg−1,

begin by rewriting the expression FixT (G/S) as follows:

FixT (G/S) = {hS ∈ G/S ∶ ∀t ∈ T t ● (hS) = hS}.

We thus have that:
∀t ∈ T t ● (gS) = gS.

So, for each element t ∈ T , since tge = tg must be in gS, we have that the following holds: for each
element t ∈ T , there exists a corresponding element s = st in S such that tge = tg = gs. So, for each
element t ∈ T , there exists a corresponding element s = st in S such that t = gsg−1. We thus have that
T ⊆ gSg−1 as desired. But since T is a p-group of order pn, and since gSg−1 is of order pn, we thus have
that T = gSg−1 as desired.

Theorem 1.68. (3rd Sylow Theorem) Let np be the number of Sylow subgroups, then np divides the
order of G

Proof. Let G act on the set of all Sylow p-subgroups of G by conjugation. By the 2nd Sylow Theorem,
we know that there is a unique orbit with respect to this group action. So, letting S denote a fixed
Sylow p-subgroup, we have that OrbitG(S) consists precisely of all the Sylow p-subgroups of G. Now,
by the orbit-stabilizer theorem, we have that

np = ∣OrbitG(S)∣ =
∣G∣

∣StabG(S)∣
.

So, since
np ⋅ ∣StabG(S)∣ = ∣G∣ ,

we thus have that np divides the order of G, as desired.

Theorem 1.69. (4th Sylow Theorem) np ≡ 1(modp).

Proof. Let Sylp(G) denote the set of all Sylow p-subgroups of G, and let S ∈ Sylp(G). Let S act on
Sylp(G) by conjugation. By Proposition 1.63, we thus have that

np = ∣Sylp(G)∣ ≡ ∣FixS(Sylp(G))∣ (mod p) .

Exericse: Show that if P ∈ FixS(Sylp(G)), then S ⊆ NG(P ).

By definition of the normalizer of a subset, we have that:

NG(P ) = {g ∈ G ∶ gP = Pg} .

Assuming that P is in FixS(Sylp(G)), we have that

∀s ∈ S s ● P = P.
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Therefore, ∀s ∈ S sPs−1 = P. That is,
∀s ∈ S sP = Ps.

So, for each element s in S ≤ G, we have that sP = Ps. So it is clear that each element s in S must
necessarily be in NG(P ). This proves that S ⊆ NG(P ). Since S is a subgroup of G, and since NG(P ) ≤ G,
we thus have that:

S ≤ NG(P ) ≤ G.
Now, since S and P are both Sylow p-subgroups of NG(P ), by the first Sylow theorem, we have that
S = gPg−1 with g ∈ NG(P ), and we thus have that S = gPg−1 = P .

Exercise 1.70. Does S4 have a composition series with composition factors of the form (Z2,Z2,Z3)?
Does S4 have a composition series with composition factors of the form (Z3,Z2,Z2)?

Solution 1.71. As discussed on the course webpage, the SageMath input

[H.order() for H in SymmetricGroup(4).subgroups()]

produces the following integer sequence:

(1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,6,6,6,6,8,8,8,12,24).

We thus find that n2 = 3, meaning that a subgroup of S4 of order 8 cannot be a normal subgroup. This is
easily seen using Sylow theory in the following way: we know that Sylow p-subgroups are all conjugate,
so if there are multiple Sylow p-subgroups, i.e., if there are at least two distinct Sylow p-subgroups A
and B, we have that

gAg−1 = B
for some g ∈ G, which shows that

gA = Bg ≠ Ag,
which shows that A is not normal. So, as indicated on the course webpage, since n2 = 3, it is impossible
to have a composition series of S4 with composition factors of the form (Z2,Z2,Z3).

On the other hand, is it possible that S4 has a composition series with composition factors of the form
(Z3,Z2,Z2)? Begin by observing that A4 ⊴ S4, with S4/A4 ≅ Z2. It is easily seen that the only subgroup
of S4 of order 12 is A4

6. But it is also easily seen that A4 does not have any subgroup of order 67. We
thus find that it is impossible for S4 to have a composition series with composition factors of the form
(Z3,Z2,Z2).

Exercise 1.72. Show that the function [⋅, ⋅] constructed in the proof of Maschke’s theorem is a scalar
product.

Solution 1.73. Recall that a module is basically a “vector space over a ring”. A module is decomposable
if it can be written in the formM ≅W⊕V , whereW and V are proper nontrivial submodules ofM . Also
recall that a module is reducible if there exists a proper non-trivial submodule. According to Maschke’s
Theorem, over C, a module M is an irreducible module if and only if M is decomposable.

So, let M be a C-module, and let W be a proper non-trivial submodule. We want to find a submodule
V such that M ≅W ⊕ V .

6See http://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S4.
7See http://groupprops.subwiki.org/wiki/Subgroup_structure_of_alternating_group:A4.
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Fix a basis B of M . Define the scalar product ⟨⋅, ⋅⟩ as follows:

⟨v⃗, u⃗⟩ = [v⃗]TB[u⃗]B.
Now, let

φ∶G→ Aut(M)
be a representation of the finite group G over a field F in which ∣G∣ is invertible. Define the mapping

[⋅, ⋅]∶M ×M → C

as follows:

[v⃗, u⃗] = 1

∣G∣ ∑g∈G
⟨φ(g)(v⃗), φ(g)(u⃗)⟩.

We claim that this mapping is a scalar product. For the sake of clarity, let φ(g)(u⃗) and φ(g)(v⃗) be
denoted as follows:

[φ(g)(u⃗)]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ug1
ug2
⋯
ugn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[φ(g)(v⃗)]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg1
vg2
⋯
vgn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Now consider the expression [u⃗, v⃗].

[u⃗, v⃗] = 1

∣G∣ ∑g∈G
⟨φ(g)(u⃗), φ(g)(v⃗)⟩

= 1

∣G∣ ∑g∈G
⟨φ(g)(u⃗), φ(g)(v⃗)⟩

= 1

∣G∣ ∑g∈G
[φ(g)(u⃗)]TB[φ(g)(v⃗)]B

= 1

∣G∣ ∑g∈G
[ug1, u

g
2, . . . , u

g
n]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg1
vg2
⋯
vgn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 1

∣G∣ ∑g∈G
[ug1, u

g
2, . . . , u

g
n]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg1
vg2
⋯
vgn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 1

∣G∣ ∑g∈G
ug1v

g
1 + u

g
2v
g
2 +⋯ + ugnvgn

= 1

∣G∣ ∑g∈G
ug1v

g
1 + u

g
2v
g
2 +⋯ + ugnvgn
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= 1

∣G∣ ∑g∈G
vg1u

g
1 + v

g
2u

g
2 +⋯ + vgnugn

= 1

∣G∣ ∑g∈G
[vg1 , v

g
2 , . . . , v

g
n]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ug1
ug2
⋯
ugn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 1

∣G∣ ∑g∈G
⟨φ(g)(v⃗), φ(g)(u⃗)⟩

= [v⃗, u⃗].

We thus find that the mapping
[⋅, ⋅]∶M ×M → C

satisfies the conjugate symmetry axiom. We claim that the linearity in the first argument of [⋅, ⋅] is
inherited from the linearity in the first argument of ⟨⋅, ⋅⟩ and the linearity of mappings of the form φg for
g ∈ G. This is illustrated below, letting a be a scalar, and letting v⃗1 and v⃗2 be elements in the module
M .

[av⃗, u⃗] = 1

∣G∣ ∑g∈G
⟨φ(g)(av⃗), φ(g)(u⃗)⟩

= 1

∣G∣ ∑g∈G
⟨aφ(g)(v⃗), φ(g)(u⃗)⟩

= 1

∣G∣ ∑g∈G
a⟨φ(g)(v⃗), φ(g)(u⃗)⟩

= a 1

∣G∣ ∑g∈G
⟨φ(g)(v⃗), φ(g)(u⃗)⟩

= a[v⃗, u⃗].

[v⃗1 + v⃗2, u⃗] =
1

∣G∣ ∑g∈G
⟨φ(g)(v⃗1 + v⃗2), φ(g)(u⃗)⟩

= 1

∣G∣ ∑g∈G
⟨φ(g)(v⃗1) + φ(g)(v⃗2), φ(g)(u⃗)⟩

= 1

∣G∣ ∑g∈G
(⟨φ(g)(v⃗1), φ(g)(u⃗)⟩ + ⟨φ(g)(v⃗2), φ(g)(u⃗)⟩)

= 1

∣G∣ ∑g∈G
⟨φ(g)(v⃗1), φ(g)(u⃗)⟩ +

1

∣G∣ ∑g∈G
⟨φ(g)(v⃗2), φ(g)(u⃗)⟩

[v⃗1, u⃗] + [v⃗2, u⃗].

Since ⟨u⃗, u⃗⟩ ≥ 0, we find that
⟨φ(g)(u⃗), φ(g)(u⃗)⟩ ≥ 0

for g ∈ G, so it is clear that [u⃗, u⃗] ≥ 0. Similarly, we have that:

1

∣G∣ ∑g∈G
⟨φ(g)(u⃗), φ(g)(u⃗)⟩ = 0⇐⇒ ∑

g∈G
⟨φ(g)(u⃗), φ(g)(u⃗)⟩ = 0
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⇐⇒ ∀g ∈ G ⟨φ(g)(u⃗), φ(g)(u⃗)⟩ = 0

⇐⇒ ∀g ∈ G φ(g)(u⃗) = 0⃗M

⇐⇒ u⃗ = 0⃗M .

To show why the biconditional statement

∀g ∈ G φ(g)(u⃗) = 0⃗M ⇐⇒ u⃗ = 0⃗M ,

begin by assuming that ∀g ∈ G φ(g)(u⃗) = 0⃗M . In particular, letting e = eG denote the identity element
in G, we have that

φe(u⃗) = 0⃗M .

Since
φ∶G→ Aut(M)

is a group homomorphism, we have that φ must map the identity element e = eG of G to the identity
morphism

idM = id∶M →M

in the codomain of φ. So, in the case whereby

∀g ∈ G φ(g)(u⃗) = 0⃗M ,

we have that:

φe(u⃗) = 0⃗M Ô⇒ id(u⃗) = 0⃗M

Ô⇒ u⃗ = 0⃗M .

We thus find that the implication whereby

∀g ∈ G φ(g)(u⃗) = 0⃗M Ô⇒ u⃗ = 0⃗M

holds. Conversely, suppose that the equality u⃗ = 0⃗M holds. Since linear mappings map zero vectors to
zero vectors, and since φ(g) ∈ Aut(M) for all g ∈ G, we thus have that

u⃗ = 0⃗M Ô⇒ ∀g ∈ G φ(g)(u⃗) = 0⃗M

as desired.

Exercise 1.74. Prove that [φ(h)(v⃗), φ(h)(u⃗)] = [v⃗, u⃗].

Solution 1.75. By definition of the mapping

[⋅, ⋅] ⋅M ×M → C,

we have that:

[φ(h)(v⃗), φ(h)(u⃗)] = 1

∣G∣ ∑g∈G
⟨φ(g)(φ(h)(v⃗)), φ(g)(φ(h)(u⃗))⟩.

It is convenient to write φ(g) = φg and φ(h) = φh. We thus arrive at the following equality:
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[φh(v⃗), φh(u⃗)] =
1

∣G∣ ∑g∈G
⟨φg(φh(v⃗)), φg(φh(u⃗))⟩. (1.1)

But recall that the mapping
φ∶G→ Aut(V )

is a group homomorphism. We thus have that the equality given in (1.1) may be rewritten as follows:

[φh(v⃗), φh(u⃗)] =
1

∣G∣ ∑g∈G
⟨φg⋅h(v⃗), φg⋅h(u⃗)⟩.

But recall that the mapping on the underlying set of G whereby g ↦ g ⋅h for fixed h ∈ G is a permutation
of the underlying set of G. Therefore,

[φh(v⃗), φh(u⃗)] =
1

∣G∣ ∑g∈G
⟨φg⋅h(v⃗), φg⋅h(u⃗)⟩

= 1

∣G∣ ∑i∈G
⟨φi(v⃗), φi(u⃗)⟩

= [v⃗, u⃗] .

Exercise 1.76. Recall that for groups A and B and γ∶B → Aut(A), then the group A ⋊γ B is the set
of pairs {(a, b) ∶ a ∈ A, b ∈ B} with product (a, b) ⋅A⋊γB (a′, b′) = (aγb(a′), bb′). Find an example of p, q,
and γ such that Zp ⋊γ Zq is solvable but not abelian.

Solution 1.77. We begin by proving a useful preliminary result. We claim that given a finite group
G, if G has a subgroup H of index 2, then H must be normal in G. For fixed h1 and h2, the mappings
h ↦ h1 ⋅ h and h ↦ h ⋅ h2 on H are both permutations of H. So it is clear that hH = Hh for h ∈ H. But
we also know that the mappings g ↦ h1 ⋅ g and g ↦ g ⋅ h2 on G are both permutations of G. We may
thus deduce that the mappings g ↦ h1 ⋅ g and g ↦ g ⋅ h2 on G ∖H are both permutations of G ∖H. We
thus arrive at the following incomplete Cayley table, where mappings denoted using the symbol ρ or the
symbol µ are permutations of G ∖H, writing H = {h1, h2, . . . , hn} and G ∖H = {g1, g2, . . . , gn}, noting
that ∣H ∣ = ∣G ∖H ∣.

○ h1 h2 ⋯ hn g1 g2 ⋯ gn
h1 gρ11 gρ21 ⋯ gρn1
h2 gρ12 gρ22 ⋯ gρn2
⋮ ⋮ ⋮ ⋱ ⋮
hn gρ1n gρ2n ⋯ gρnn
g1 gµ11 gµ12 ⋯ gµ1n
g2 gµ21 gµ22 ⋯ gµ2n
⋮ ⋮ ⋮ ⋱ ⋮
gn gµn1 gµn2 ⋯ gµnn

But since
{gµi1 , gµi2 , . . . , gµin} = {gρi1 , gρi2 , . . . , gρin}

for all indices i, we thus find that
gH =Hg
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for all g ∈ G ∖H as desired.

Now, let p = 3, let q = 2, and define γ∶Z2 → Aut(Z3) so that γ0 is the identity automorphism on Z3, and
γ1 is the automorphism on Z3 mapping each element in Z3 to its inverse. As discussed in class, we have
that

Zp ⋊γ Zq = Z3 ⋊γ Z2 ≅D3 ≅ S3.

We adopt the notation indicated below for dihedral groups introduced in class:

D3 = {1, a, a2, b, ba, ba2}.

It is clear that the set {1, a, a2} forms a cyclic subgroup of D3 which is isomorphic to Z3. From the
preliminary result given towards the beginning of our present solution, since {1, a, a2} is a subgroup
of D3 of index 2, we have that this subgroup must in fact be a normal subgroup of D3. This is also
easily seen from a geometric perspective in the sense outlined as follows. Observe that the elements
in the cyclic subgroup {1, a, a2} are precisely the orientation-preserving isometries in D3. Recall that
the composition of two orientation-preserving isometries must be an orientation-preserving isometry.
Similarly, the composition of an orientation-preserving isometry and an orientation-reversing isometry,
or vice-versa, yields an orientation-reversing isometry. Finally, the composition of two orientation-
reversing isometries must yield an orientation-preserving isometry. It is thus seen that the rotation
subgroup {1, a, a2} must be the kernal of a homomorphism from D3 to Z2, thus showing that {1, a, a2}
forms a normal subgroup of D3, as desired.

We thus arrive at the subnormal series given below:

{1}◁ {1, a, a2}◁D3 ≅ Zp ⋊γ Zq.
Of course, the group

Z3 ⋊γ Z2 ≅D3 ≅ S3

is not abelian. But given the subnormal series

{1}◁ {1, a, a2}◁D3 ≅ Zp ⋊γ Zq,

and given that
D3/{1, a, a2} ≅ Z2

and
{1, a, a2}/{1} ≅ Z3,

we have that the above subnormal series is a composition series whose composition factors are abelian.
We thus have that Zp ⋊γ Zq is solvable but not abelian.
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