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Exercise 1.1. If ii € C* and M = Ocm, then show that T(Lg (ii)) = Oy

Solution 1.2. Suppose that % € C* and Mii = O¢m, with M = ¢[T]g. Let % be denoted as follows:

Now, since M = ¢[T']g, we have that:
M= [Le(T(5)) . Le(T (). Le (T (5.))]

letting B = {l;l, by, . .. ,l;n} Since Mt = Ocm, we have that:

Le (T (b)) us + -+ Le (T (bn)) tn = Ocm.
By linearity of L¢ and T', we have that:

L¢ (T (u151 + et ungn)) = (_j(Cm.
Since L¢ is a linear isomorphism, from the above equality, we have that:
T(ulgl et unl;n) = 6W.

Equivalently, T(Lz!(i)) = O O
Exercise 1.3. Show that V & W forms a vector space.

Solution 1.4. Given (0,w),(Z,y) € V @ W, we have that
(0, ) +¢ (Z,4) e VO W,
since +y is a binary operation on V' and +y is a binary operation on W, with v+, 2 € V and w+yy e W.

The commutativity of +4 is inherited from the commutativity of +y and +y in an obvious manner, as
indicated below.

(U1,01) +g (U2, W) = (U1 +y U2, W1 +w Wa)
= (Vg +v Uy, W +w W1)

= (1727@2) +® (61711}1)'

The associativity of +4 is inherited from the associativity of +y and +yp in an obvious manner, as
indicated below.

(U1,701) +o ((172,7112) +o (537@3)) = (U1,01) +g (V2 +v U3, Wa +w W3)
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= (V1 +v (U2 +v U3), W1 +w (W +w Ws3))
= ((V1 +v V2) +v Us, (W1 +w W2) +w W3)

= (U1 +y Vg, W1 +w W) +e (U3, Ws3)
= ((771,1171) +a (172,1172)) +eo (U3, W3).
Given (v,w) € V @ W, we have that
(0,0) +e (-8, -w) = (0,0)
and o o
(0,0) +¢ (0,0) = (0,0) +g (0,0) = (0,w0).

The domain of the operation -¢ is from the Cartesian product of the underlying field of V' and W with
the direct sum V @ W. It is clear that the codomain of this operation is V & W, since we have that

¢ (U,0) = (ct,c0) e VoW

since cv € V and vw € W. The properties concerning the operation -¢ given below show that V & W
forms a vector space with respect to the operations +y g and ygw.

(c+d) g (0,0)=((c+d) vV, (c+d)ww)
=(cyU+dyvU,cwW+dyw)
=(cyvU,cw W) +g (d-y U,dw W)
=C (U,0) +¢ d ¢ (U,0),
o ((0,0) +o (Z,7)) = ¢ (U +y T, +w )
=(cv (T+v @), cow (0 +w J))
=(cyV+ycyT,cowW+w cw i)
=(cyvU,cow W) +g (v Z,cow Y)
= (U,0) +e Co (7,7)
(cd) g (V,w) = ((cd) -y U, (cd) -w W)
=(cv (dv0),cw (dww))
=cCg (dv0,dww)
¢ (de(0,10)),
(1v 0,1y w)
= (0,w).

1 ‘@ (67 U_:))

Exercise 1.5. Let dim(V') = n, dim(W') = m, dim(X) = r, and dim(Y") = s. Prove that z, ., [T®Q]
is equal to the following (r + s) x (n + m) matrix.

Byeow

n m
r Bx [T]BV ‘ 0
s 0 |5 Qs

Solution 1.6. By definition, the transition matrix

Bxoy [T ® Q]BVeW
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is equal to the following matrix:

[LBXeY((T @ Q)(ﬁlv 6))7 LBX(BY((T @ Q)(ﬁ% 6))7 EER) LBX@Y((T @ Q)(ﬁm 6))7

LBXGBY((T ® Q)(Gv @1)), LBXGBY((T ® Q)((jv JJ?))7 s 7LBX®Y((T ® Q)(()’ wm))]

The matrix in the upper-right r x n quadrant of

Bxey [T ® Q]BVeW

must be 5, [T]5,, because the first r entries in

LBX@Y((T ® Q)(ﬁla 6))

must be the first  entries in Lg, (7'(¢;)) for all indices i, since Bxgy is given by the direct sum of the
bases Bx and By, i.e. Bxgy consists of expressions of the form (Z;,0) and (0,%y). Similarly, the last s
entries in

LBXGBY ((T ® Q)('Ew 6))
all must be 0 since Q(0) = 0. Symmetric arguments may be used to evaluate the remaining quadrants.
Exercise 1.7. Let V =R?, and let W = R2. With respect to the tensor product V ® W, show that:
(17 1) ® (174) + (17 _2) ® (_172) =0 (170) ® (170) +
6(1,0)®(0,1)+

3(0,1) ® (1,0) +
0(0,1) ® (0,1).

With respect to the direct sum V & W, show that

((17 1) ) (174)) + ((17_2) ) (_172)) = ((27_1) ) (0v6))

Solution 1.8. Recall that the tensor product M ® N of two modulues M and N over a ring R may
informally be defined as the set of expressions of the form m ® n for m € M and n € N, subject to the
following relations:

(i) r@(y+y)=r0@y+r0Y);
(i) (z+2)@y=r0y+s'0yY;
(iii) (z-r)®@y=xz (r-y).

Expand the expression
(17 1) ® (1a4) + (17 _2) ® (_]—72)

using the above relations as follows.

(1,1)® (1,4) + (1,-2) ® (-1,2)

(1,0)® (1,4) + (1,-2) ® (-1,2) + (0,1) & (1,4)

(1,0)® (1,0) + (1,-2) ® (-1,2) + (0,1) ® (1,4) + (1,0) ® (0,4)
(1,0)® (1,0) + (1,-2) ® (-1,2) + (0,1) ® (1,4) + 4(1,0) ® (0, 1)
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(L,0)® (1,0) + (1,-2) ® (-1,2) + (0,1) ® (1,0) + 4(1,0) ® (0,1) + (0,1) ® (0, 4)

(1,0)® (1,0) + (1,-2) ® (~1,2) + (0,1) ® (1,0) + 4(1,0) ® (0,1) + 4(0,1) ® (0, 1)

(1,0) ® (1,0) + (1,0) ® (-1,2) + (0,1) ® (1,0) + 4(1,0) ® (0,1) +4(0,1) ® (0,1)

+(0,-2)® (-1,2)

(1,0)® (1,0) = (1,0) ® (1,-2) + (0,1) ® (1,0) + 4(1,0) ® (0,1) + 4(0,1) ® (0,1) = 2(0, 1) ® (-1,2)
(0,1) ® (1,0) +4(1,0) ® (0,1) +4(0,1) ® (0,1) +2(0,1) ® (1,-2) +2(1,0) ® (0,1)

(0,1) ® (1,0) +6(1,0) ® (0,1) +2(0,1) ® (1,0)

3(0,1) ® (1,0) +6(1,0) ® (0, 1).

Using componentwise addition, we have that (1,1) + (1,-2) = (2,-1) and (1,4) + (-1,2) = (0,6), so
((1’ 1)7 (174)) + ((17 _2)7 (_17 2)) = ((27 _1)7 (076))

Exercise 1.9. Let By = {01,7,, 73} and By = {w,w}. Let ¢:V — V be such that
¢ (avy + by + cU3) = ¢ty + 2avy — 3bs,
and let ¢: W — W be such that
Y (ay + big) = (a + 3b) wy + (4b - 2a) ws.

Compute g, (@5, By [V ]y, and
By ew [¢ ® 1/J]BV®W‘

Note that By gy consists of six elements that have a specific order.

Solution 1.10. Begin by computing 5, [¢]s, and s, [¢]s, as follows.
By [(b]Bv = I:LBV((b(ﬁl)LLBv(¢(ﬁ2))7LBv(¢(ﬁ3))]
[c 0 0
=10 2a 0 [,
0 0 -3b
By [¢]BW = [LBW(w(wl))7LBW (¢(w2))]

_—a+3b 0
B 0 4b - 2a |’

The matrix
By ew [Qb ® w]B‘@W

may be evaluated as the Kronecker product of g, [¢]s, and g, [¥]s, -
B =g, [¥]s, - Also, let the entries of A be denoted as follows: A = [a;;]

Write A = g, [¢]s,, and write

1<ij<3- Then the matrix

BV@W [¢ ® w]BVQBW
is equal to the Kronecker product of A and B, which is equal to the following matrix:

CL17lB CLLQB (11733
agle 012’2B az’gB .
CL37lB (Zg’gB ag’gB
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Explicitly, we have that the matrix
BV@W [¢ ® w]BV®W
is equal to the following matrix:

[ac + 3bc 0 0 0 0 0
0 4bc - 2ac 0 0 0 0
0 0 2a? + 6ab 0 0 0
0 0 0 8ab - 4a? 0 0
0 0 0 0 -3ab — 9b? 0
| 0 0 0 0 0 -12b% + 6ab |

Exercise 1.11. Prove that if ¢: G - H is a homomorphism, then im(¢) < H with respect to oy, where
im(¢) = {¢(g) : g € G}.

Solution 1.12. Given a subset S of the underlying set of a group 7', to prove that S forms a subgroup
of T, it suffices to prove that S is closed under the underlying binary operation of 7" and that S is closed

under inverses with respect to this operation. This property concerning subgroups is sometimes referred
to as the Two-Step Subgroup Test (see Joseph A. Gallian’s Contemporary Abstract Algebra).

So, let g1 and gy be arbitrary elements in G, so that ¢(g1) and ¢(go) are arbitrary elements in im(¢).
Since ¢: G - H is a homomorphism, we have that

?(g1) o 9(g2) = ¢(g1 0g g2) € im(9),

thus proving that im(¢) is closed with respect to oy. Similarly, we have that

(0(9)) " =o(g7") eim(¢)
for g € G, since
(6(9)) ' o(g) =en = dlec) = d(g ' g) = d(g7 ") (g)

since a group homomorphism must map a group identity element to another group identity element,
since ¢(eqg) = d(g) = d(eq)P(g), and thus ¢(eq) = ey from the equality ¢(g) = d(eq)d(g).

Exercise 1.13. Prove that ker(¢) < G, where ker(¢) ={g€ G | ¢(9) =en}.

Solution 1.14. We begin by proving that ker(¢) < G, using the Two-Step Subgroup Test described
above.

Let g1,92 € G be such that ¢(g;) = ey and ¢(g2) = ey, so that g; and go are arbitrary elements in the
kernel ker(¢) of the group homomorphism ¢: G - H. We thus have that
P(g1) 2 9(g2) = ¢(g1092) =emoen = em,

thus proving that g1 o go € ker(¢). Similarly, since for g € G we have that (¢(g))™ = ¢(¢g7!) as discussed
above, we have that

(¢(9)) "' =e =enm
if g € ker(¢) and thus ¢(g7') = ey if g € ker(¢), thus proving that ker(¢) < G.

Now, let k € ker(¢), and let i € G. It remains to prove that: iki~! € ker(¢). Equivalently, it remains to
prove that ¢(iki~') = ey. Using the fact that k € ker(¢), we have that

¢(iki™) = ¢(i)o(k)o(i™") = p(i)p(i™") = p(ioi™") = d(ec) = em,
thus proving that ker(¢) 4 G.



Exercise 1.15. Prove Cayley’s theorem.

Solution 1.16. Let v denote the mapping which maps g € G to the permutation in S given by the
mapping h +— g e h, letting the codomain of ¢ be equal to im(2)).

First, we begin by proving that ¢ is well-defined in the sense that for g € G, 1(g) is indeed an element
in the codomain of ¢. For g € G, let o, denote the mapping 0,:G — G whereby

og(h)=geh=goheG
for all h € G. The mapping o, must be injective, since
04(h1) = 04(he) = ghy = ghy == hy = hy,

and the mapping o,: G - G must be surjective, since for k € G, we have that: o,(¢7'k) = goglok =k e G,
thus proving that o, € S, and thus proving that o, is in the codomain of .

Now let g1, 92 € G, and let 0y,:G - G and 0,,: G - G be such that o,,(h) = g1h € G and oy, (h) = goh € G
for all h € G. Suppose that ¥(g1) = ¢(g2). That is, o, = 04,. That is, g1h = goh for all h € G. Letting
h = e, we thus have that ¥(g;) =¥ (g2) = g1 = ¢, thus proving that 1 is injective.

Since we constructed ¢ so that the codomain of ¢ is equal to the image of 1, we have that 1 is surjective
by definition. Since v is bijective, it remains to prove that v is a group homomorphism.

Again let ¢1,92 € G. We thus have that 1(g192) is the mapping 0,,,,:G - G which maps h to g;gs2h.
But it is clear that the composition ¥(g;) o ¥ (go) maps h to g1(g2h) = g192h, thus proving that ¢ is an
isomorphism.

Exercise 1.17. For all g1, g5 € G, show that either gy H = goH or gtH n g H = @.

Solution 1.18. Let g1, 95 € G. Our strategy is to show that if gy H ngoH is nonempty, then g H = go H.
We remark that we are using the logical equivalence whereby (-p) = ¢ =qV p.

Suppose that g1 H n go H is nonempty. Note that we are letting H < G. So there exists an element in
the following intersection:
{prh:heHyn{goh:he H}.

We thus have that there exist elements h; and hy in H such that
gih1 = g2ho € g1 H 0 go H.
Therefore,

gihih3' = go.

Writing hg = hihy' € H, we thus have that g1hs = go. We thus have that the left coset goH is equal to
{g1hsh : h € H}. But since the mapping from H to H which maps h € H to hsh is bijective (see previous
exercise), we have that

g2H={glhghihEH}:{hliliEH}Zng

as desired.

Exercise 1.19. Show that the canonical mapping ¢,: H — gH is a bijection, so that, as a consequence,
we have that |gH| = |H|. Another consequence of this result is that |H| divides |G| (Lagrange’s theorem).
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Solution 1.20. Let H < G, and let g € G, and let ¢,: H - gH be such that ¢,(h) = gh € gH for all
h e H. We have that
¢g(h1) = ¢g(h2) = ghy = ghy == hy = hy,

thus proving the injectivity of ¢,. Similarly, it is clear that ¢, is surjective, since for gh € gH we have
that ¢4(h) = gh. We thus have that [gH| = |H| as desired.

We now use this result to prove Lagrange’s theorem. We have previously shown that two cosets g; H
and g, H are either disjoint or equal. Therefore, since g € gH for all g € GG, we have that G may be
written as a disjoint union of cosets, say

G=gHugpHuU---ug,H
where n € N. But since |gH| = |H| for g € G, we have that |G| = n|H|, thus proving Lagrange’s theorem.

Exercise 1.21. For g € G, let order(g) denote the smallest n € N such that g" = e. Show that order(g)
divides |G].

Solution 1.22. It is easily seen that the set

{1’ q, 92’ o ’gorder(g)—l}

forms a cyclic subgroup of G. By Lagrange’s theorem, proven above, we have that the order of this
cyclic subgroup divides |G|, and we thus have that order(g) divides |G| as desired.

Exercise 1.23. Prove that Stab(x) is a subgroup of G.
Solution 1.24. We again make use of the Two-Step Subgroup Test described above.

Let g1, g2 € G be such that g; ez =x and g ez = x, so that g; and g, are arbitrary elements in Stab(x).
Now consider the following expression: (g1g2)  x. By definition of a group action, we have that

(1g2) ez =g10(g20x)=g1ex =1,

thus proving that Stab(z) is closed under the underlying binary operation of G. Letting g € G be such
that g e x =z, since (g7'g) @z = e e x = x by definition of a group action, we have that g1 e (ge x) = z,
thus proving that ¢! e x = = as desired, with Stab(z) < G.

Exercise 1.25. Prove that a G-set X is a disjoint union of orbits.

Solution 1.26. Let x be a G-set, and let :G x X - X denote a group action. Let z,y € X, so that
Orbit(z) and Orbit(y) are arbitrary orbits. Suppose that Orbit(z) n Orbit(y) + @. Let

Grer=greyeX
denote an element in the nonempty intersection Orbit(z) n Orbit(y). We thus have that
(52'g1) ez =y.

Therefore,
Orbit(y) = {ge (g2'g102) | g€ G}.

Equivalently,
Orbit(y) = {9(g2'91) = | g € G}.
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Since the mapping whereby g ~ ¢g(g;'g1) is a permutation of G, we thus have that
Orbit(y) ={hex | he G},

thus proving that two orbits are either equal or disjoint. Since x € Orbit(z) for z € X, we thus have that
X may be written as a disjoint union of orbits.

Exercise 1.27. Show that the map
¢ Orbit(z) - G/Stab(x)
given by the mapping
g ex — gStab(x) € G/Stab(z)
is a well-defined, bijective G-set homomorphism.

Solution 1.28. Suppose that g; e x = go @ . Equivalently, g;'g1 @ 2 = 2. Therefore, g;'g; € Stab(x),
so g1 € goStab(z), so gi1Stab(z) = goStab(x), since two given cosets must be disjoint or equal. We thus
have the mapping ¢, is well-defined in the sense that g; e x = g e x implies that ¢,(g; @ ) = ¢.(go ® x).

Letting g1, 92 € G so that g; e x and g  x are arbitrary elements in the domain of ¢,, we have that

¢O:(g10x) = Pp(go @ ) = g1Stab(x) = goStab(z).

We thus have that there exist elements g3, g4 € Stab(x) such that

9193 = 9294

We thus have that
(9193) *T = (9294) ° T,
which implies that
gi1®eTrT=gae,

thus proving the injectivity of ¢,. It is obvious that ¢, is surjective, since given a coset gStab(z) in the
codomain of ¢,, we have that ¢,(g) = gStab(z).

Since
¢ ((hg) e z) = (hg)Stab(x) = h(gStab(x)) = hé.(g e ),

we have that ¢, is a G-set homomorphism.

Exercise 1.29. Prove that if H 4 G, then G/H forms a group with respect to the operation og/; on
G[H whereby g1 H oy g2 H = g1goH for all g1, 9, € G.

Solution 1.30. Assume that H < G. We begin by showing that the operation og/g = o is well-defined
in the sense that the expression g, H o/ g2 H does not depend on the coset representatives of the cosets
g1H and g9 H. So, suppose that g1 H = g3H and goH = g4H, letting g1, g2, 93,94 € G. To prove that the
operation og/y is well-defined, it thus remains to prove that:

9192H = g3g4H.

Since g1 H = g3H, let g3 = g1hy, where hy € H. Similarly, since goH = g4H, let g4 = goho, with hy € H. So,
it remains to prove that
9192H = g1h1gaho H.
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But since H < GG, we have that gH = Hg for all g € G. Since hy1g, € Hgy = goH, let h1gy = gohs, where
hs € H. We thus have that
grhagahoH = g1g2hsho H.

But it is clear that
g192h3hoH = g1go H
since the mapping h + hghoh is a bijection on H. We thus have that
939aH = g192H
as desired, thus proving that og, g is well-defined.

Since oy maps elements in (G/H) x (G/H) to G/H, we have that G/H is a binary operation on G/H.
So we have thus far shown that oy is a well-defined binary operation on G/H.

The binary operation og g = o inherits the associativity of the underlying binary operation of G in a
natural way:

g1H o (goH o gsH) = g1H o ((g293)H )
= g1(9293)H
= (9192)93H
= (9192)H ogsH
= (g1H 0o goH) 0 g3H.

We have thus far shown that og,p is a well-defined associative binary operation on G/H.

Letting g € G be arbitrary, and letting e = e denote the identity element in G, we have that:
(e)(gH) = (eg)H
=eH
= (9e)H
= (gH)(eH).

Again letting g € G be arbitrary, we have that:
(9H)(g"'H)=(9-97")H
=eH
=(g7'9)H
= (97" H)(gH).

We thus have that if / 4 G, then G/H forms a group under the operation og/y given above.
Exercise 1.31. Show that ¢:G — G/H is a group homomorphism, where g — gH, and ker(¢) = H.

Solution 1.32. Since ker(¢) 4 G as shown above, from our results given in the previous exercise, we
have that G/H is a group with respect to the binary operation o¢/y.

Now let g1, g2 € G. We thus have that
$(9192) = (9192)H = (91 H) oy (92H) = ¢(g91) oy #(92)

by definition of the well-defined group operation og/g.
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Exercise 1.33. If NV is normal in GG, then Vge G 3¢’ e G gN = Ng'.

Solution 1.34. Our strategy is to prove the following much stronger statement: “/N is normal in G if
and only if Vge G gN = Ng.”

We are using the following definition of the term normal subgroup given in class: “H is a normal subgroup
of G if ghg™' € H for all ge G and h € H, denoted by H < G.”

(=) First suppose that N < G, i.e. with respect to the above definition. We thus have that hnh=! e N
for all h e G and n € N. Now consider the left coset gV, letting g € G be arbitrary:
gN={gn : ne N}.

Now, for gn € gN, we have that gng=! € N by assumption that N < G, according to the above definition
of the term normal subgroup. So, letting g be “fixed” (and arbitrary), for each choice of an element
n € N, we have that there exists a corresponding element n’ € N such that gng=' = n’. That is, for each
n € N, we have that gn = n’g for some n’ € N. So it is clear that

gN={gn : neN}={n'g : e McN}c Ng

for some subset M ¢ N. Similarly, for each element ng in the right coset Ng, since g~'ng =n’ for some
n'” € N by the above definition of the term normal subgroup, we have that ng = g(n’), so it is clear that

Ng={ng : ne N} ={g(n") : n" e M'c N} cgN

for some subset M’ c N. So since gN € Ng and gN 2 Ng, by mutual inclusion, we have that gN = Ng
as desired.

(<) Conversely, suppose that Yge G gN = Ng. So, let g € G and n € N be arbitrary. Since gN = Ng,
we have that there exists some element n’ € N such that gn = (n')g. Therefore, gng™* = n’ € N, as
desired.

Exercise 1.35. Let Mg(A) ={g e G | gag™' € G for all a € A}, then show that Ms(A) is not a group
in general. Hint: Take G to be the group of permutations of the set of integers and show that for
A={oeG:0(i) =1, for i <0} that g(z) =x+ 1€ Mg(A), but g (z) =2 -1¢ Mg(A).

Solution 1.36. Let G denote the permutation group Sz of the set Z of all integers. Let
g=0:2L—->7

denote the bijection whereby o(z) = z+ 1 for z € Z. Let A denote the collection of all permutations in
7 € G such that 7(z) =z if 2<0.

We claim that Mg(A) does not form a subgroup of G in this case. Letting 0:Z — Z be as given above,
we have that o € Mg(A). But is it true that o=! is in Mg(A)?

The mapping 0~':7Z — Z is such that 07'(z) = z — 1 for all z € Z. We have that o~! € G, but it is not
true that
Vae Ao ta(ot)teA,

since for z < 0 and a € A, we have that

o lao(z) =ca(z+1),
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but since a € A and z < 0, it is not necessarily true that “a(z + 1) = z+ 17, i.e. it is not necessarily true
“a(-1+1) =-1+17, so it is not necessarily true that that

o tao(2) = a.

For example, if a € A is such that
a(0) = 31415,

then we have that
o tac(-1) = 07'a(0) = 071(31415) = 31414.

So we have shown that Mg(A) is not necessarily closed under inverses with respect to the underlying
binary operation of GG, thus proving that Mg (A) is not a subgroup of G.

Exercise 1.37. Show that if G is finite then Ng(A) = Mg(A). Where does the proof fail if G is infinite?

Solution 1.38. The normalizer Ng(A) of a subset A of a group G is almost always defined as
Na(A) ={geG | gA= Ag}

or equivalently as
Ne(A)={geG | gAg' = A}.

This appears to be the standard definition of the normalizer of a subset. Writing
Mg(A):={geG | gag™t e Aforall ae A},

we claim that if G is finite, then Mg(A) = Ng(A). So, suppose that G is finite. Letting g be in Ng(A),
we have that gA = Ag. So for all a in A, we have that ga = (a’)g for some a’ in A. So, for all a in A,
gag~tisin A. So, Ng(A) is a subset of Mg(A). Conversely, let g be in Mg(A). So for all a in A, gag™!
isin A. So, for all @ in A, ga = (a”")g for some a” in A. This just shows that gA is contained in Ag. But
since G is finite, we know that |[gA| =|Ag|. This is easily seen bijectively. But since gA € Ag, and since
lgA| = |Ag|, and since G is finite, we may thus deduce that gA = Ag. But then g must be in Ng(A), thus
completing our proof.

Now, observe that if G is infinite, it is still true that Ng(A) € Mg(A), since if g € Ng(A), ga = (a’)g
for some a’ in A, so gag™! is in A for all @ in A. But for the infinite group G, the above proof fails in
its latter part in the following sense. For g in Mg(A), we have that: for all @ in A, gag™" is in A. So,
for all a in A, ga = (a”)g for some a” in A. But this just shows that gA is contained in Ag. Using the
previous exercise, it is easily seen that it is not in general true that gA ¢ Ag implies gA = Ag, given that
(G is infinite. Since it is not in general true that gA ¢ Ag implies gA = Ag, we thus have that ¢ may or
may not be in Ng(A), so Mg(A) may or may not be contained in Ng(A), given that G is infinite.

Exercise 1.39. Show that Cg(A) < Ng(A) <G.

Solution 1.40. We are using the definition of the normalizer of a subset whereby Ng(A) ={ge G | gA =
Ag}. Since eA = Ae, we thus have that Ng(A) is nonempty.

Now let g,h € G be such that gA = Ag and hA = Ah so that g and h are arbitrary elements in Ng(A).
Consider the expression ghA:
ghA={gha : acA}.
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Now, let a € A be arbitrary, so that gha is an arbitrary element in ghA. Since hA = Ah, we have that

ha =a'h
for some a’ € A, and we thus have that
gha = g(a")h.
Since gA = Ag, we have that
ga/ — a”g

for some a’’ € A. Therefore,
gha =a"gh € Agh.

We thus have that
ghAc Agh.

An obvious symmetric argument may be used to prove the reverse inclusion
ghA 2 Agh.
We thus have that Ng(A) is closed with respect to the underlying binary operation of G.

As above, let g € Ng(A) be arbitrary. We thus have that gA = Ag. Now let a € A be arbitrary. So

ga=ag

for some a’ € A. Therefore,
ag—l — g—la/

for some a’ € A. This shows that each element in Ag! is in g~'A. An obvious symmetric argument may
be used to prove the reverse inclusion whereby

AgtagA

By the Two-Step Subgroup Test, we thus have that Ng(A) < G as desired.
Now recall that the centralizer Cz(A) of A is given as follows:

Co(A)={geG|VaecAag=ga}.

Now let g € G be such that Va € A ag = ga, so that g is an arbitrary element in Cz(A). Then it is clear
that
gA={ga : aca}={ag : aca}=Ag,

thus proving that Ci(A) € Ng(A). Also observe that Ci(A) is nonempty ae = ea for a € A.

Now let g,h € Cq(A) be arbitrary, and let a € A be arbitrary. Since h € Cg(A), we have that
ha = ah,

and we thus have that
gha = gah
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Since g € Cg(A), from the equality gha = gah, we thus obtain the equality

(gh)a=a(gh),
thus proving that Cg(A) is closed under the underlying binary operation of the subgroup Ng(A).

Again let g € C5(A) be arbitrary, and again let a € A be arbitrary. From the equality

ga =ag

we obtain the equality
ag™t =g7'a,

thus proving that Cg(A) is closed with respect to inverses. We thus have that
Cg(A) < Ng(A) <G
as desired.
Exercise 1.41. State and prove the four isomorphism theorems for groups.
Solution 1.42. The First Isomorphism Theorem for groups may be formulated in the following manner.

The First Isomorphism Theorem: Let H and G be groups. Then for a morphism ¢:G - H, we have
that ker(¢) 4 G, and furthermore, we have that G/ker(¢) = im(¢).

Proof: We have proven in a previous exercise that ker(¢) 4 G. As suggested in class, to prove the First
Isomorphism Theorem, one may use the canonical morphism

Yy = Y: Glker(¢) - im(¢)

given by the mapping gker(¢) — ¢(g) for a coset gker(¢) in the domain of ¢, with g € G. To prove
the First Isomorphism Theorem using this canonical morphism, one must show that 1 is a well-defined,
bijective, group homomorphism.

Letting g € G, so that gker(¢) is an arbitrary element in the domain of i, we have that

Y(gker(9)) = ¢(9),

and ¢(g) € im(¢) since ¢: G - H. The mapping v is well-defined in the sense that ¥ (d) is in the given
codomain of ¢ for each element d in the comain of 1. But we also must prove that 1 is well-defined in
the sense that an expression of the form v (d) does not depend on a given coset representative for an
element d in the domain of .

So, let g,h € G, so that gker(¢) and hker(¢) are elements in the domain G/ker(¢) of ¢, = ¢. Now,
suppose that gker(¢) = hker(¢). To prove that 1 is well-defined, it thus remains to prove that

U(gker(¢)) = ¢ (hker(¢)).

Now, under the above assumption whereby gker(¢) = hker(¢), since e € ker(¢), we may thus deduce
that
ge = hk

for some element k € ker(¢). We thus have that

g=hk
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for some element k € ker(¢). Now apply the morphism ¢:G — H to both sides of the equality g = hk:

g=hk = ¢(g) = ¢ (hk)
= ¢(9)=¢(h) ¢ (k)
= ¢(g)=9¢(h)e
= ¢ (9) =9 (h)
= ¢(gker(¢)) = ¥ (hker(e)).

So we have shown that

gker(¢) = hker(¢) = v¢(gker(¢)) = ¢(hker(¢))
for cosets gker(¢) and hker(¢) in the domain G/ker(¢) of 14 = 1, thus concluding our proof that 1 is
well-defined.

We claim that 1 is injective. Again letting g, h € G, we have that:

¥ (gker(9)) = ¢ (hker(¢)) = é(g) = ¢(h)
= ¢(9) (¢(h)) " =en=c
= ¢(g)p(h ') =¢
= ¢(g-(h™")) =e
= g-(h7!) eker(¢)
= Jk eker(p) g-(h') =k
— Jk eker(¢p) g=k-h.

Now, using the fact that ker(¢) is a normal subgroup, we have that (ker(¢))h = h (ker(¢)). Since there
exists an element k in ker(¢) such that g = k- h, and since (ker(¢)) h = h (ker(¢)), we may deduce that
there exists an element £ € ker(¢) such that g =h-£. So for m € ker(¢) 4 G, we have that

g-m=h-({-m)eh(ker(¢)),

and we thus have that each element ¢g-m in g (ker(¢)) is in h(ker(¢)), thus proving the following
inclusion:

gker(¢) ¢ hker(¢).
We have already shown that:
¥(gker(¢)) = (hker(¢)) = Ik e ker(¢) g=k - h.

Under the assumption that ¢ (gker(¢)) = ¢»(hker(¢)), we thus have that there exists an element k~! in
ker(¢) such that
h=k"g.

Note that we are using the fact that ker(¢) forms a subgroup of the domain of ¢ in the sense that we
are using the fact that ker(¢) must be closed under inverses. From the equality

h=k"g,

it is easily seen that
gker(¢) 2 hker(¢)

14



by repeating the above argument which was used to prove that
(3k e ker(¢) g =k-h) = gker(¢) € hker(¢).

By mutual inclusion, we thus have that

U(gker(9)) = ¥(hker(¢)) = gker(¢) = hker(¢),
thus proving the injectivity 1.

So, we have thus far shown that ¢ is a well-defined injective mapping from G/ker(¢) to im(¢). Now,
let g € G, so that ¢(g) is an arbitrary element in the codomain im(¢) of ¥. Since

Y(gker(¢)) = ¢(g) € im(¢),

it is thus clear that v is surjective.

So, we have thus far shown that ¢ is well-defined and bijective. It thus remains to prove that ¢ is a group
homomorphism. Again let g, h € G, so that the left cosets gker(¢) and hker(¢) are arbitrary elements in
the domain G/ker(¢) of 14 = 1. Now consider the evaluation of ¢ at the product (gker(¢)) - (hker(¢)):

¥ ((gker(¢)) - (hker(¢))) =¥ ((g- h)ker(¢))
=p(g-h)
=¢(g) - ¢(h)
= ¢ (gker(¢)) - tp(hker(¢)).
We thus have that
g = 1: Glker(¢) > im(¢)
is a well-defined, bijective group homomorphism, thus proving that G/ker(¢) 2 im(¢). O

The Second Isomorphism Theorem may be formulated in the following manner:

The Second Isomorphism Theorem: Let G be a group, and let H, K < G be such that H < Ng(K). Then
HnK<dH,and HK/K 2 H/(Hn K).

Proof: We begin by defining a mapping
mH->HK|K
whereby h— hK for he H.
We claim that 7 is a group homomorphism. To show this, we begin be demonstrating that H K forms a
subgroup of GG. Let hq,hy € H and let ki, ke € K, so that hik; and hoky are arbitrary elements in H K.

Consider the product
hikihoks.

Now, since H < Ng(K). We thus have that hK = Kh for all h € H. In particular, we have that
kihy = hoks for some element k3 in K. We thus have that

hikihoky = hy (kiha) ko = hy (hoks) ko = (hihg) (ksks) € HK,

thus proving that the product HK is closed with respect to the underlying binary operation of G.
Similarly, since (h1k;)™" = k;thi!, and since hK = Kh for all h € H, we thus have that

ki'hi' = hski' e HK,
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thus effectively proving that HK < G.

Moreover, we claim that K < HK. Consider the coset ki HK. But recall that hK = Kh for all h € H.
Given an element

k’lhlkg € k’lHK
in the left coset k1 H K, we have that

kihiks = hiksks = hy (kskoki') ky € HK Ky
for some k3 € K, thus proving the inclusion whereby
ktHK c HKE;.

Conversely, given an element

hlekl € HKkZl,

we have that
hakoky = hiks = kahy = ky (ky'ks) hy = kikshy = kihoke € ki HK,

the proving the reverse inclusion whereby

kiHK 2 HKk;.
We thus have that K < HK as desired.
So, we have shown that the given codomain

cod(r) = HK|K
of the mapping 7: H - HK /K forms a group, in the sense that K 4 HK.
To prove that 7 is a group homomorphism, begin by letting hy, hy € H. Consider the expression 7(hihs):

7(h1hg) = (hihg) K.
We have shown that K < HK. We thus have that
7(hihe) = hiho K = (hi K)(ho K) = T(ha7(h2)),

thus proving that 7 is a group homomorphism.
Now consider the kernel of the group homomorphism 7: H - HK /K

ker(r)={hy e H:7(hy) = K}
—{(heH: MK =K).

We claim that the above set is equal to H n K. Letting x € H n K, we have that x € H, and we have
that
K=K

since z € K, thus proving the inclusion whereby:

Hn K cker(r).
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Conversely, let h; € H be such that h; K = K. Since e € K, we thus have that hie = k for some k € K,
and we thus have that h; = k& for some k € K. So it is clear that hy € H n K, thus proving the desired
inclusion given below:

Hn K 2ker(r).
We thus have that

ker(7) = Hn K,
as desired.
So, since

7mH->HK|K
is a group homomorphism whereby

ker(7) = Hn K,

by the First Isomorphism Theorem, we thus have that:
H/(HnK)=zim(7).

We claim that 7 is surjective. To show this, let h; € H and k; € K, so that hik; K is an arbitrary element
in the codomain

cod(r) = HK|K
of 7. It is clear that hik; K = hy{ K. We thus have that
T(h1) =K =hkKeHK/K,
thus proving the surjectivity of 7. So, by the First Isomorphism Theorem, we thus have that
H/(HnK)2HK/|K
as desired. [J
The Third Isomorphism Theorem may be formulated in the following manner:

The Third Isomorphism Theorem: Let G be a group and let H, K < G, with H < K. Then K/H is
normal in G/H, and furthermore, we have that (G/H)/(K/H) =2 G/K.

Proof: Define v:G/H — G/ K so that
1(gH) = gK
for each coset gH in the domain of v. We begin by showing that ~ is a well-defined group homomorphism.

To show that ~ is well-defined, begin by letting g1, g> € G, and suppose that g1 H = goH. Let ky € K be
arbitrary, so that g; - k; is an arbitrary element in g; K. Since

gr-e-ky=g1-ki,
and since g1 H = go H, we have that
Gr-ki=gi-e-ki=gz2-hi-ky€gkK

for some h; € H. An obvious symmetric argument shows that ¢ K 2 go K. We thus have that ~ is
well-defined in the sense that

g H =g H = (g1 H) =v(g2H).
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Letting ¢; and g, be as given above, since H, K 4 G

(g1 H - gaH) = v(g192H)

= 192K

= K-gpK

=v(g:1H) v(g:H).
We thus have that 7 is a group homomorphism. We claim that the kernel of v is K/H. If gH is in the
kernel of v, where g € G, then gK = eK = K. So g must be in K. That is, gH € K/H since g € K.
Conversely, given an element kH in K/H, we have that v(kH) = kK = K, and we thus have that kH
is in ker(y). We thus have that ker(y) = K/H as desired. It is clear that v is surjective, since for

gK € G/K, we have that v(gH) = gK, with gH € G/H. So, by the first isomorphism theorem, we have
that

(G/H) [ker(y) = im(7),

and we thus have that

(G/H) [ (K[H) = G[K,
as desired. [

The Fourth Isomorphism Theorem may be formulated in the following manner:

The Fourth Isomorphism Theorem: Let G be a group and let H < G. Then the canonical projection
morphism 7: G - G/H whereby
g gt

induces the bijections indicated below:
(K:H4K <G}« {K:K<G/H},
(K:H4K 4G}« {K:K 1 G/H}.

Let
f{K:HAK <G}~ {K:K<G/H}

denote the mapping whereby
f(K)=n(K)={kH:keK}=K/H

for a subgroup K of G such that H 9 K. We claim that f is well-defined in the sense that f(K) is indeed
an element in the given codomain of f for K € dom(f). Letting K € dom(f), we have that H 4 K < G.
Since K € G, we have that K/H ¢ G/H, and since H < K, we have that K/H forms a group under the
operation - whereby ki H - ko H = (kiko)H for ki, ko € K. But furthermore, since H < G, G/H forms a
group with respect to the operation - whereby g1 H -goH = (g192) H for g1, g2 € g, thus showing that K/H
is a subgroup of G/H.

Conversely, consider the mapping
f’:{K:FSG/H} - {K:HS‘KSG}

such that: given an element

K = {ng, g H, ... ,g|F|H} <G/H
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in the domain of f’, where g1, go, . .. 9|k € G, we have that

_ Ix]
f(K)=UgH=U k.
=1 keK
We claim that f’ is well-defined in the sense that f/(K) € cod(f’) for K € dom(f’). Again let

F:{ng,92H7--->g|f|H}SG/H

be an element in the domain of f’. We thus have that f’(K) consists precisely of all expressions of the
form g;h where o
ie{l,2,...,|Kl|}

and h € H. We thus have that f/(K) c G. We know that K < G/H, so g;, Hgi, H = g;,9:,H € K for all
indices i1 and i5. So given elements hq, hy € H, we have that

Gih1giho = gizhs

for some index i3 € {1,2,...,|K|} and some element hs € H. We thus have that f/(K) is closed under
the underlying binary operation of GG. Similarly, given an index

ive{1,2,...,|K|},
and letting h, € H, since K < G/H, we have that
(gilH)_l :gi2H€K

for some index
ire{1,2,...,

K]},
S0

girh1 = girho
for some hy € H, thus proving that f/(K) < G.

Since K < G/H, we have that eH = H ¢ K. So it is clear that H ¢ f'(K) < G. Since H < G, we have
that H < f'(K) <G. Given an element

gih € g(K)
where i € {1,2,...,|K|} and h e H, since H 4G, we have that

(g:h)H = H(g;h),

so it is clear that H < f/(K) < G. We thus have that f/(K) € cod(f'), as desired, thus proving that f’
is well-defined.

Since
f{K:H9K <G}~ {K:K<G/H}

and

f’:{F:FSG/H}»{K:HﬂKSG}
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are both well-defined, we may thus consider the composition
fof'{K:K<GJH) - {K:K<G/H}.
Let K be an element in the domain of f’. As above, write:
K = {ng,ggH, . ,g|f|H} <G/H,
where g1, go, . . .  9IR) € G. Now evaluate the expression (f o f/)(K) in the following manner:
(fo f)UEK) = f(f'(K))
K]
=f ng‘H
i=1

K]
= (Unn]

:W(ngLﬂgQHLﬂ---wgmH)
=7 (giH) w7 (g H) 6w (g H)
=7 ({gih:he HY) wr({gh:he H})w-or({gmh:heH})
= {guhH :he Hyw {gohH :he H}yw-w {ghH : he H}
= {glﬂ}w{ng}w---w{maH}
:{ng,gQH,...,g@H}
=K.
Conversely, consider the composition
flfofi{K:HI4K<G} > {K:H<JdK<G}.

Now, let K be such that H 9 K < G, those that K is an arbitrary element in the domain of the product
f"o f. Since H 4 K, we have that K/H forms a group. Write

KJH = {ky H, ko H, ... knH
letting n € N. Now evaluate the expression (f'o f)(K) as follows.

(f o N)(K) = f'(f(K))
= f'(m(K))
= f({kH ke K))
= ["({kyH, ks H, ...k HY)
Ot

=K.
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We thus have that f and f’ are inverses of one another. This essentially proves that f is bijective, which
proves that
{K:H4K<G}

and
{K:K<G/H)

are bijectively equivalent, as desired. More explicitly, for elements x1, x5 € dom( f), we have that:
f(a1) = f(22) = ['(f (z1)) = ['(f (22))
— ("o [)(z1) = (/"o [)(22)

—> T1 = T2.
We thus have that f is injective. Somewhat similarly, letting y € cod(f), we have that:

y € cod(f) = y € dom(f")
= f'(y) € cod([")
= f'(y) € dom([)
= Jzedom(f) z = f'(y)

= Jzedom(f) f(2)=f(f'(y))

= Jzedom(f) f(2)=(fof)(y)
= Jzedom(f) f(z)=y.

We thus have that f is surjective, as desired.
We apply a similar strategy to show that {K : H 9 K 4G} and {K : K < G/H} are bijectively equivalent.
We have already shown that

f{KH4K<G}—-{K:K<G/H)}

is bijective. Now, observe that the set

{K:H<4K<G}

is contained in the set

{K:H<4K<4G}.

Similarly, the set o
{K:K<G/H}

is contained in the set o
{K:K<J1G/H}.

Now, let f denote the mapping obtained by restricting the domain of f to {K : H 4 K 4 G}. Since f is
injective, we have that f is injective. Now, let K be such that H < K < G. Since H < K < G, we have
that 7(K) < G/H, since f is well-defined. We claim that 7(K) < G/H. We know that gK = Kg for all
g € G. It remains to prove that

(gH){kH :ke K} ={kH : ke K}(gH)

for all g € G. Since
(gH){kH :ke K} ={gHkH : ke K} ={(gk)H : ke K},

21



and since gK = Kg for all g € G, we have that
(gH){kH : ke K} ={(kg)H : ke K} ={kHgH : ke K} ={kH : ke K}(gH),
thus proving that 7(K) < G/H, as desired. So, we know that the mapping

f:f‘{K:HgKgG}:{K:HﬂKﬂG} - {K:K<G/H}

obtained by restricting the domain of f to the subset
{K:H4K<JdG}c{K:HJK <G}

is injective. But furthermore, we have shown that if K is such that H < K < G, then f(K) < G/H.
That is, o
K edom(f) =f(K)e{K: K1G/H}.

We thus have that the image of f is contained in {K : K < G/H}. Now let
g{K:H4K<1G} »{K:K<aG/H)}

denote the mapping obtained by restricting the codomain of f to {K : K < G/H}. Since f is injective,
we have that g is injective. We claim that g is also surjective. Let

(k1. ko, ... Ky} € G

be such that
{krH,koH, ... k,H} 9G/H,

so that the collection {k1H, koH, ... k,H} is an arbitrary element in the codomain of g. Consider the
union

UkHcG.
i=1
Given two elements k;, hy and k;,he in the above union, since
kil Hkle = kil k’,LQH

we have that .
kilhlkiz hg = kil k’iZ h,g € U k',LH
i=1

for some element h3 € H. We thus have that U}, k;H is closed with respect to the underlying multi-
plicative binary operation of GG. Similarly, since

(ki H) ™ = ki H

for some index iy, it is clear that
UkH<G.

i=1

But since H is also a subgroup of G, it is clear that:

H<|JkH<G.
i=1

22



Since

{kyH, koH, ... koH} < G/H,

we have that
gH{k1H koH, ... k,H} ={k1H koH,... k,H}gH

for all g € G. To prove that
UJkH<G,
i=1

it remains to prove that
gUk:H = (UkiH)g
i=1 i=1
for all g € G. Let g € G be arbitrary. Letting gk; hi; be an arbitrary element in gU;", k; H, since
ngnH = klegH = (kle)(Hg) = kiQHg7
we have that
gUkiH ¢ (UkiH)g7
i=1 i=1
and a symmetric argument may be used to prove the reverse inclusion. Similarly, it is clear that

H<a|JkH,
i=1
since k;, hiH = Hk; hy since H 4 G. So, we have thus far shown that
H<|JkH<G.
i=1

So, given that
{kyH,koH, ... k,H} 9G/H,

we have that: N
Jk:H € dom(g).
i=1

Now evaluate the expression

as follows:

o( ()= (0]

i=1
={khH :i€{1,2,....,n},he H}
={k;H:1€{1,2,...,n}}
= (ki H, koH, ... ko HY 9 G/H.

We thus have that the mapping
g{K - H4K<G} - {K:KaG/H}

is bijective, thus completing our proof.
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Exercise 1.43. Recall that A,, is simple for n > 5. However, it is not true that A, is a simple group.
Prove that A, is not a simple group using a counterexample, and write out all 12 elements in Ajy.

Solution 1.44. We defined the alternating group A, using permutation matrices in class. This group
also may be defined as the group under composition consisting of all even permutations in S,,. With
respect to the definition of A, given in class, we have that A, consists precisely of the following 12
matrices:

100 0 1 000
0100 0010
0010 0001
0001 0100
1000 0100
0001 1 000
0100 0001
0010 0010
0100 0100
0010 0001
1 000 0010
00 01 1 000
0010 0010
1 000 0100
01 00 0 001
00 01 1 000
0010 0001
0001 1 000
1000 0010
0100 0100
0001 1 000
0100 0100
1000 0010
0010 0001

We claim that there is a normal subgroup of A4 which is isomorphic to the Klein four-group Cy x Cs.
Consider the following multiplication table.
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1000 0100 0010
0100 1000 0001
© 0010 0001 1000
0001 0010 0100
1000 1000 0100 0010
0100 0100 1000 0001
0010 0010 0001 1000
0001 0001 0010 0100
0100 0100 1000 0010
1000 1000 0100 0001
0001 0001 0010 1000
0010 0010 0001 0100
0010 0010 1000 0100
0001 0001 0100 1000
1000 1000 0010 0001
0100 0100 0001 0010
0100 1000
1000 0100
0001 0010
0010 0001

Let H denote the subset of A4 consisting of the matrices illustrated in the above multiplication table.
From the above multiplication table, it is clear that H forms a subgroup of A4, and that H is isomorphic
to the Klein four-group Cy x Cj.

Our strategy to prove that H 4 A4 is simply to use a “brute-force” computational approach, by com-
putationally verifying that aH = Ha for a € A;. A Mathematica program which may be used for these
computations is illustrated below.

rowl = {1, 0, 0, 0} ;
row2 = {0, 1, 0, 0} ;
row3 = {0, 0, 1, 0} ;
rowd = {0, 0, 0, 1} ;

rowlist = {rowl, row2, row3, rowd} ;
permutation = Permutations[{1, 2, 3, 4}][[24]] ;

testmatrixl = {rowlist[[permutation[[1]]]],
rowlist[[permutation[[2]]]], rowlist[[permutation[[3]]]1],
rowlist[[permutation[[4]1]1]1]1} ;

groupelementl = {rowlist[[1]], rowlist[[2]], rowlist[[3]],
rowlist[[4]]} ;
groupelement2 = {rowlist[[2]], rowlist[[1]], rowlist[[4]],
rowlist[[3]]} ;
groupelement3 = {rowlist[[3]], rowlist[[4]], rowlist[[1]],
rowlist[[2]]} ;
groupelement4 = {rowlist[[4]], rowlist[[3]], rowlist[[2]],
rowlist[[1]]} ;

Print [Sort [{testmatrixl.groupelementl // MatrixForm,
testmatrixl.groupelement2 // MatrixForm,
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testmatrixl.groupelement3 // MatrixForm,
testmatrixl.groupelement4 // MatrixForm}]] ;

Print [Sort [{groupelementl.testmatrixl // MatrixForm,
groupelement2.testmatrixl // MatrixForm,
groupelement3.testmatrixl // MatrixForm,
groupelement4.testmatrixl // MatrixForm}]] ;

If [Signature[permutation] == 1,

Print [Sort[{testmatrixl.groupelementl, testmatrixl.groupelement2,
testmatrixl.groupelement3, testmatrixl.groupelementd}] ==

Sort [{groupelementl.testmatrixl, groupelement2.testmatrixl,
groupelement3.testmatrixl, groupelement4.testmatrixi1}]] ;,
Print["The given permutation must be even."]]

Using the above program, we obtain the following computational results which show that Ya e A aH =
Ha.

1000 1000
0100 0100
0oo10l"H o011 0]
000 1 000 1

000 1 0010 0100 1000

0010 000 1 1000 0100

o1o0o0f0l1oo0o0/'looo1)]loo 10

1000 0100 0010 000 1
1000 1000
0010 0010
000 1|7 H[ogoo0 1]
0100 0100

000 1 0010 0100 1000

0100 1000 000 1 0010

trooo0l'lotroolloo1o|'looo1

0010 000 1 1000 0100
1000 1000
000 1 000 1
01007 o1 00]
0010 0010

000 1 0010 0100 1000

1000 0100 0010 000 1

oo1o0f0looo1l'l1ooo0f]lo1o00

0100 1000 000 1 0010
0100 0100
1000 1000
0001 |[T=H[ogoo0 1]
0010 0010
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000 1 0010 0100 1000
0010 0001 1000 0100
o100 l1oo0o0'looo1]lo0oo1o0
1000 0100 0010 000 1
000 1 000 1
1000 1000
0oo0o1ol|T=H[ogo1 0]
0100 0100
000 1 0010 0100) (1000
1000 0100 0010 000 1
oo1o0f0looo1l'l1oo0o0)]lo100
0100 1000 000 1 0010
000 1 000 1
0100 0100
1 o007 " 1000/
0010 0010
000 1 0010 0100 1000
0100 1000 000 1 0010
troo0oo0l'lotroolloo1o]|'looo1
0010 000 1 1000 0100
000 1 000 1
0010 0010
o100 |TH[o 100
1000 1000
000 1 0010 0100 1000
0010 000 1 1000 0100
o100 l1oo0o0/'looo1)]loo1o0
1000 0100 0010 000 1

Exercise 1.45. Let G be a group, and suppose that there exists a nontrivial proper normal subgroup
N of G. So, there is a composition series for N and G/N, as illustrated below:

{}=Hy<H,9--<H;= N 9 Hyy 2 Hyy 9 - 9 G
! 1 1 !
N/N < Hyy < Hpyo 9 - < GIN

By the fourth isomorphism theorem, we have that there is a bijection between the set of expressions of
the form H,,; 4 G/N and the set of expressions of the form H,; < G. If Hyy; 9 G/N, then Hyyy < G.
Check that since Hp,; < Hyyjy1 then Hp; S Hypy1.

Solution 1.46. We know that the canonical projection morphism
G- GIN

whereby
g gN
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induces the bijection indicated below:
{(K:N4K 4G}« {K:K 1G/N}.

Now suppose that Hy; 9 Hyio1 < G/N. Write

Hyi ={q1N,g:N, ..., guN}.
Note that cosets of N must all be of the same cardinality. Write:

Hyyio1 = {hiN,hyN,... hy,N}.
We thus have that
Hyyi= zCJlgiN
and .
Hyin = g hiN,

since the projection morphism 7 induces bijections according according to the Fourth Isomorphism
Theorem. Since
HZH‘ d HZH’H;

we have that
th{glN,ggN,,gnN} = {glN,ggN,,gnN}th

for all indices ¢. So, given an element
hiyni € hiy N € Hypi

and an element
Gis M2 € Giy N € Hys,

we have that
hilnlgi2n2 € hilanem

i.e., hjn1g;,ne is an arbitrary element in h; nqHy.;. But since
hiN{glN,ggN,. .. ,gnN} = {glN,ggN, ce »gnN}th

for all indices 7, we have that
hiyn1gi,n2 = gisnzhi ny

for some index i3, and some elements n3,ny € N. Rewrite this equality as
_ -1
hiyn1gisne = gisnshi,nang ny.

Since N 4 G, we have that
hiyn1gi,na = ginanshi na

for some n5 € N, and we thus have that

(hiyn1)gin2 = gisne(hiyna)
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for some ng € N. So, for an arbitrary element
hiyn1gisng € (hiyna ) Hya,
we thus have that
(hiyn1)gizn2 = gigne(hiyna) € Hevi(hiyna),
thus proving the inclusion whereby
(hiyna)Hevi € Hoyi(hiyny).
A symmetric argument may be used to prove the reverse inclusion, in order to prove that Hy,; < Hp,i1.

Exercise 1.47. State the Jordan-Holder theorem, and write a sketch of a proof of this theorem, by
filling in the details of the proof sketch of this theorem given in class.

Solution 1.48. The Jordan-Holder theorem states that any two composition series of a given group are
equivalent in the sense that they have the same composition length and the same composition factors,
up to permutation and isomorphism. Recall that a subnormal series of a group G is a finite sequence of

the following form:
{B}ZH()S]HlS]"‘S]HnZG.

Recall that a subnormal series
{6}=H0§1H1§1"'51Hn:G.

of a group G is a composition series if all the factor groups H;,;/H; are simple.

Letting G be a finite group, assume that there are two composition series for G:

{1}:N0 d N1 < < Nk < Nk+1
Il
G
Il
{1}=My, ¢ M, < a4 M, 4 My,

We want to show that the above composition factors are permuted. We may assume without loss of
generality that M, # Nj. To prove that the composition factors given by each of the above series are
permutations of each other, we make use of an inductive approach, illustrated by the following diagram.

G
% k
N, M,
Ni_y <—— N N My <—— My

composition factors permute
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We need to verify that Ny n M, < N;, and that Ny n M, < M,.
To verify this, we apply the Second Isomorphism Theorem.
Recall that the Second Isomorphism Theorem may be formulated in the following manner.

The Second Isomorphism Theorem: Let G be a group, and let H, K < G be such that H < Ng(K). Then
HnK<H,and HK/K 2~ H/(Hn K).

By the Second Isomorphism Theorem, since Ny, M, < GG, to prove that Npn M, 4 Ny, it suffices to prove
that Nk < Ng(Mg), i.e.,
Ny <{geG:gM,= Mg}

But since M, 4 G, we have that
VgeG gMy= Mg,

and we thus have that
Ng(Mg) = {g € G : gMg = Mgg} = G,

so since N < GG, we thus have that Ny < Ng(M,), as desired. An identical argument may be used to
prove that Ny n M, < M,.

So, by the Second Isomorphism Theorem, we have that:

Nk/(Nk N Mg) = NkMg/Mg
We need to show that:

(i) NpM, forms a subgroup;
(ii) NgM, is normal in G; and
(iii) NiM, contains Ny and M,.

To show that NpM, forms a subgroup, we begin by letting ny,ns € Ny and mq, my € My, so that nym,
and nomey are arbitrary elements in Ny M,. Now consider the following expression:

n11m1namMo.
Since Ny 4 G, we have that
my Ny, = Nymy,

and we thus have that
ningmims € Ny My,

for some ng € Ny, thus proving that N,M, is closed with respect to the underlying binary operation of
G. Similarly, since

(nimy) ™' =mi'ngt,

and since Ny 4 G, we have that
-1 _
(nimy)” =ngmy!

for some ny € N, thus proving that NpM, is closed under inverses. We thus have that Ny M, < G, as
desired.
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Now, let g € G be arbitrary. Again let n; € Ny and m; € M), and consider the following expression:
gnimq € gN M,.

Since N, < G, we have that
gnimy =nagms.

Since M, < G, we have that
gnimy = ngmag € Ny Mg

for some mqy € My, thus proving the inclusion whereby
gNk My € N Myg.

A symmetric argument may be used to prove the reverse inclusion, in order to prove that Ny M, < G. It
is obvious that the product Ny M, contains both N, and M,, since expressions of the form ey, m are in
NiM, for m € M, and expressions of the form n-e,;, are in NyM, for n € Ny.

Since NpM, < GG, and since N M, contains both N; and M,, we thus arrive at the subnormal series given
below:

N, AN, M, <G
My, A N M, < G.

But recall that the subnormal series
{1}=N0§1N1§1"'S1NkﬂNk+1=G

is, in fact, a composition series. We thus have that the quotient group G/Nj is simple. From the
subnormal series

N, AN, M, < G,

we are thus lead to consider the following quotient groups: Ny/Ny, NyM,/ Ny, and G/N}. By the Fourth
Isomorphism Theorem, we know that there exists a bijection between normal subgroups of G containing
Ny, and normal subgroups of G/ Ny.

But G/Ny is simple. Since
N M| Ny 4 G| Ny,

we have that N, M,/ Ny is either trivial or is equal to G/Nj. By the fourth isomorphism theorem, Ny M,
is either equal to G' or Nj. Since N; # M, by assumption, we have that N M, = G.

Using the Second Isomorphism Theorem, we have shown that
Nk/(Nk N Mg) = NkMg/Mg

We thus have that:
]\fk/(]\/vjc N Mg) = G/Mg

A symmetric argument shows that:

Mg/(Nk N Mg) = G/Nk

Inductively, this effectively completes our proof.
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Exercise 1.49. Prove that for abelian groups, the composition series is such that the quotient between
consecutive terms is given by a prime order.

Solution 1.50. Let GG be an abelian group, and let x € G. Let x # e be of order n. If n is not prime
then 27/? is of order p. We thus have that there exists a subgroup of G of order p. Let

{{z"/P)} = Hy < Hy < -+ < H,, = G[{a"/P)

be a composition series for G/{x"/?). Inductively, we may assume that the composition factors in the
above composition series are all of prime order. By the Fourth Isomorphism Theorem, we know that
there is a bijection of the form

(K : K 9G[{z"P)} «— {K : (z"P) 9 K 4 G}
so there exists a composition series for GG of the form
ﬁoﬂﬁl ﬂﬂﬁnZG

But since H,,q /FZ- ~ H;,1/H; for all indices i, we have that all of the composition factors in the above
composition series are all of prime order.

Exercise 1.51. There are 5 groups of order 8 = 23. Find all the possible composition series.

Solution 1.52. Recall that a subnormal series of a group G is a finite sequence of the form
{6}=H0§Hlﬂ"‘ﬂHn=G.

Recall that a subnormal series
{e}=Hy<H 4 <H,=G

is a composition series if each factor group of the form H,,,/H; is simple. Also recall that a group is
simple if it is nontrivial and has no proper nontrivial normal subgroups. Also recall that a finite simple
abelian group is necessarily isomorphic to Z/pZ for some prime p.

Begin by considering a composition series for Z/8Z. Given a subgroup H of Z/87Z, we have that
(Z|8Z)]H is simple if and only if it is of prime order. So it is clear that (Z/8Z)/H is simple if and only
if it is of order 2. We thus have that the latter part of a composition series for Z/8Z must be of the form

{0,2,4,6} 9 Z/3Z.

Similarly, since a finite simple abelian group must be isomorphic to a group of the form Z/pZ for a
prime p, we thus find that a composition series for Z/8Z must be of the following form:

{0} {0,2} €{0,2,4,6} < Z/8Z.

Now consider a composition series for (Z/27) x (Z[4Z). Given a subgroup H of this group, we know that
((Z]27) x (Z]AZ)) [ H is simple if and only if it is of prime order. In particular, ((Z/2Z) x (Z[AZ))/H is
simple if and only if it is of order 2. Now observe that the direct product (Z/27Z) x (Z/4Z) has precisely
three subgroups of order 4:

{(0,0),(0,1),(0,2),(0,3)} 2 (Z/2Z) x (Z[4Z),
{(0,0),(1,1),(0,2),(1,3)} 2 (Z/2Z) x (Z]AZ),
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{(0,0),(0,2),(1,0),(1,2)} < (Z/2Z) x (Z[AZ).
We thus arrive at the following compositions series:

{(0,0)} 2{(0,0),(0,2)} 2{(0,0),(0,1),(0,2),(0,3)} 2 (Z/2Z) x (Z[4Z)
{(0,0)} 2{(0,0),(0,2)} 2{(0,0), (1,1),(0,2), (1,3)} 1 (Z/2Z) x (Z[4Z)
{(0,0)} 2{(0,0),(0,2)} 2 {(0,0),(0,2), (1,0), (1,2)} 9 (Z/2Z) x (Z/4Z)
{(0,0)} 2{(0,0),(1,0)} 2{(0,0),(0,2),(1,0), (1,2)} 1 (Z/2Z) x (Z[4Z)
{(0,0)} 2{(0,0),(1,2)} 2{(0,0),(0,2), (1,0), (1,2)} < (Z/2Z) x (Z/4Z).

Now consider a composition series for (Z/27) x (Z/27) x (Z]27Z). There are several subgroups of order
4 of (Z|27) x (Z|27.) x (Z|27Z.), namely:

{(0,0,0),(0,0,1),(0,1,0), (0,1,1)} <
{(0,0,0), (0,0,1), (1,0,0), (1,0,1)} < < (ZJ2Z
{(0,0,0),(0,0,1), (1,1,0), (1,1,1)} < (Z/2Z) x (Z/2Z) x (Z2Z

( (2[22) < (2/2Z) )
(1, ( ) )
(1, ( ) )
{(0,0,0),(0,1,0),(1,0,0), (1,1,0)} < (Z/2Z) x (Z/2Z) x (Z/2Z)
(1, ( ) )
( ( ) )
( ( ) )

7.)27) x (Z)2Z

x (Z]2Z

{(0,0,0),(0,1,0), (1,0,1), (1,1,1)} 2 (Z/2Z) x (Z/2Z) x (Z,/2Z
{(0,0,0),(1,0,0), (0,1,1), (1,1,1)} 2 (Z/2Z) x (Z/2Z) x (Z/2Z
Z]27) x (Z]27) x (Z]27Z

{(0,0,0),(0,1,1),(1,0,1), (1,1,0)} <

We thus arrive at the following composition series:

{(0,0,0)} < {(0,0,0), (0,0,1)} < {(0,0,0), (0,0,1), (0,1,0), (0,1,1)} < (Z/2Z) x (Z/2Z) x
{(0,0,0)} €{(0,0,0), (0,1,0)} 2 {(0,0,0), (0,0,1),(0,1,0), (0,1,1)} < (Z/2Z) x (Z/2Z) x
{(0,0,0)} 2{(0,0,0), (0,1,1)} 2 {(0,0,0), (0,0,1),(0,1,0), (0,1,1)} < (Z/2Z) x (Z/2Z) x
{(0,0,0)} 2{(0,0,0), (0,0,1)} 2 {(0,0,0), (0,0,1),(1,0,0),(1,0,1)} < (Z/2Z) x (Z]2Z) x
{(0,0,0)} €{(0,0,0), (1,0,0)} < {(0,0,0), (0,0,1),(1,0,0),(1,0,1)} < (Z/2Z) x (Z/2Z) x
{(0,0,0)} 2{(0,0,0), (1,0,1)} < {(0,0,0), (0,0,1),(1,0,0),(1,0,1)} < (Z/2Z) x (Z/2Z) x
{(0,0,0)} 2{(0,0,0), (0,0,1)} 2 {(0,0,0), (0,0,1),(1,1,0),(1,1,1)} < (Z/2Z) x (Z]2Z)
{(0,0,0)} €{(0,0,0), (1,1,0)} € {(0,0,0), (0,0,1),(1,1,0),(1,1,1)} < (Z/2Z) x (Z2Z) x (Z/2Z)
{(0,0,0)} 2 {(0,0,0), (1,1,1)} < {(0,0,0), (0,0,1), (1,1,0),(1,1,1)} < (Z/2Z) x (Z/2Z) x (Z/2Z)

( 2 (Z/22)
( 0), (
( ); x(
( ): (
(1, ); (
(1, ): x(
( ): (
(1, ); (
(1, ): (
{(0,0,0)} < {(0,0,0), (0,1,0)} < {(0,0,0), (0,1,0), (1,0,0), (1,1,0)} < (Z/2Z) x (Z2Z) x (Z/2Z)
(1, ); (
( ); (
( ); (
( ); x(
( ); (
( 1), (
( ): x(
( ): (
( ); (

7)27)
7.)27)
Z)2Z)
7/27)
Z)2Z)
Z)27)

{(0,0,0)} < {(0,0,0), (1,0,0)} < {(0,0,0), (0,1,0), (1,0,0), (1,1,0)} < (Z/2Z) x (Z/2Z) x (Z/2Z)
{(0,0,0)} 2{(0,0,0), 1,1,0)} < (Z/2Z) x (Z)27) x (Z]2Z)
{(0,0,0)} < {(0,0,0), (0,1,0)} < {(0,0,0), (0,1,0), (1,0,1), (1,1,1)} < (Z/2Z) x (Z/2Z) x (Z/2Z)
1,1,1)} € (Z/2Z) x (Z2Z) x (Z/2Z)
1,1,1)} < (Z/2Z) x (ZJ27) x (Z,/2Z)

1,1)} < (Z/2Z) x (Z)2Z) x (Z2Z)
1,1,1)} < (Z/2Z) x (Z2Z) x (Z/2Z)
1,1,1)} < (Z/2Z) x (Z27) x (Z,/2Z)

1,0)} < (Z/2Z) x (Z)2Z) x (Z2Z)

1,1,0)} < {(0,0,0),(0,1,0),(1,0,0

(1,

(1,
), (1,
); (1,
), (1,
), (1,
{(0,0,0)} 9 {(0,0,0), (1,0,1)} 2 {(0,0,0), (0,1,0), (1,0,1),
{(0,0,0)} < {(0,0,0),(1,1,1)} < {(0,0,0),(0,1,0),(1,0,1), (1,
{(0,0,0)} 2{(0,0,0), (1,0,0)} < {(0,0,0), (1,0,0), (0, 1,1), (1,
{(0,0,0)} 2{(0,0,0), (0,1,1)} < {(0,0,0), (1,0,0), (011 (1,
{(0,0,0)} < {(0,0,0),(1,1,1)} < {(0,0,0),(1,0,0),(0,1,1), (1,
{(0,0,0)} 2{(0,0,0), (0,1,1)} < {(0,0,0), (0,1,1), (1,

(1,0,1
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{(0,0,0)} 2{(0,0,0),(1,0,1)} 2{(0,0,0),(0,1,1),(1,0,1),(1,1,0)} < (Z/2Z) x (Z]2Z) x (Z|27Z)
{(0,0,0)} 2{(0,0,0),(1,1,0)} 2{(0,0,0),(0,1,1),(1,0,1),(1,1,0)} < (Z/2Z) x (Z]2Z) x (Z|2Z).

Now consider composition series for the following dihedral group:
Dy ={1,a,a? a* b,ba,ba* ba®}.
It is easily seen that there are precisely three different subgroups of order 4 of D4, namely:

{1,a,a%,a*} 9 D,
{1,a% b,ba*} < D,
{1,a?, ba,ba’} < Dy.

It is clear that the set {1,a,a? a3} of rotational isometries forms a subgroup of D,. It may be less
clear as to why {1,a?,b,ba?} forms a subgroup, or why {1,a?, ba,ba®} forms a subgroup. To illustrate
why {1,a?,b,ba?} and {1,a? ba,ba?} both form subgroups, we evaluate the Cayley tables for both
{1,a2,b,ba?} and {1,a?, ba,ba®}, using the dihedral relations whereby a* = b? = (ab)? = 1. We remark
that from these relations, we have that ab = ba?, since:

b? = (ab)? == bb = abab
= b=aba

=— ba® = ab.

a2 | b | ba?
1 [ a® | b | ba?

a? | 1 |ba®| b
b b | ba?2| 1 | a?

ba?2 | ba? | b | a®2 | 1

Entries in the above Cayley table may be evaluated using dihedral relations in the manner illustrated
below.

a’b = aab
=a(ab)
= a(ba®)
= (ab)a®
= (ba?)a®
= ba®

= ba?.

aba® = ba’a’®

=b.

ba’ba? = baabaa

= ba(ab)aa
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= ba(ba®)aa
= baba
=b(ab)a
=b(ba*)a

— 2t

=1

o 1 | a2 | ba | ba®
1 1 | a2 | ba | ba?
a? | a® | 1 |bad| ba
ba | ba |ba®| 1 | a?
ba® | ba® | ba | a? 1

Entries in the above Cayley table may be evaluated using dihedral relations in the manner illustrated
below.

a*ba = aaba
=a(ab)a
= a(ba®)a
= aba®
=ab

= ba’.

baba = b(ab)a
=b(ba®)a
=1.
So, since {1,a,a? a®}, {1,a?,b,ba?}, and {1,a?, ba,ba3} are the only subgroups of D, of order 4, it is

easily seen that the only possible composition series for the dihedral group of order 8 are the subnormal
series given below:

{1} s {1,a*} 9 {1,a,a* a*} 9 D,

{1} < {1,a*} 2 {1,a% b,ba®} < D,

{1} < {1,b} 2 {1,a? b,ba*} < D,

{1} a{1,ba®} < {1,a?b,ba*} < D,

{1} < {1,a*} 9 {1,a% ba,ba®} 9 D,

{1} < {1,ba} 2 {1,a* ba,ba®} 9 D,

{1} a {1,ba®} < {1,a? ba,ba’} < D,.
So, it remains to consider composition series for the quaternion group. Recall that the quaternion group
is an 8-element group on the set

{1,-1,i,-1,7,—j, k, -k}

with a presentation of the following form:

(i,5,k |2 = j2 = k* =ijk = -1).
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It is known that there are precisely 3 subgroups of order 4 of g, namely the subgroups given below,
which are all isomorphic to the cyclic group Z/4ZE] It is also known that all of these subgroups of order
4 are normal.

{17Z'7 _17 _Z} d QS
{17j7_17_j} < Q8
{1,k,-1,-k} < Qs.

We thus find that the only composition series for the quaternion group are the following series:

{1} a{1,-1} 9 {1,4,-1,-i} <4 Qs
{1} < {17_1} < {17j7_]~7 _]} < QB
{1} <« {1,-1} < {1,k, -1, -k} 4 Qs.

Exercise 1.53. Let A and B be groups, and for b € B, let ¢, be an automorphism of A, so that
¢:B - Aut(A)
is a group homomorphism. Define A x, B as the set
{(a,b):a € Abe B}
endowed with the binary operation o4,,5 on A x4 B whereby
(a,0) oax 5 (a',0) = (agy(a’), b(V))

for a,a’ € A and b,0’ € B. Show that A x B forms a group, and show that Ax, B = Ax B if ¢y(a) = a for
all be B, i.e. ¢ is the identity automorphism on A for all b € B.

Solution 1.54. Let ay,as € A and let by, by € B. By definition of the operation o = O Axny By WE have that
(a’ b) OAxyB (CL’, b,) = (a¢b(a,)7 b(b,))>

and since

oA A
must be an automorphism of A for b € B, we thus find that
(a,0) 01y (0", 1) = (acn(a’),b()) € {(a,) :a € A,be B)

for a,a’ € A and b,b’ € B, thus proving that o4, p is a binary operation on {(a,b) : a € A,b € B}.
We claim that this binary operation is associative. To prove this, begin by letting aq,as,a3 € A and
b1, by, b3 € B. Evaluate the product (a1,b1) o ((az,b2) o (as,bs)):

(a1,01) o ((az,b2) o (a3,03)) = (a1,b1) o (azgp,(az), babs)
= (a1¢b1 (a2¢b2(a3))7 bl(b2b3)) .

Now evaluate the product ((ai,b1) o (az,bs)) o (as, bs):

((a1,b1) o (az, b)) o (a3, b3) = (a1, (az),b1b2) o (a3, b3)

!See http://groupprops.subwiki.org/wiki/Subgroup_structure_of_quaternion_group.
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= (@105, (a2)Ppyp,(a3), (b1b2)bs3) .

Now recall that
¢:B - Aut(A)

is a group homomorphism. Also observe that ¢, is a group homomorphism for all b € B. We thus find
that the product (aq,b1) o ((az,b2) o (as,bs)) may be rewritten in the following manner, making use of
the associativity of the underlying binary operation of B:

(ar,b1) o ((ag,b2) o (a3, b3)) = (a1,b1) o (aze, (as), babs)
= (a1, (a2w,(az)), b1(b2bs))
= (190, (azp, (a3)), (b1b2)bs)
= (a1, (a2) v, (P, (a3)), (b1b2)bs3)
= (190, (a2) du,p,(az), (b1b2)bs3) -

We thus find that
(a1,01) o ((az,b2) o (as3,03)) = ((a1,b1) o (az,b2)) o (asz,b3)

for ai,as,a3 € A and by, by, b3 € B. We have thus far shown that the operation ©Ax,B 18 an associative
binary operation on the set {(a,b) : a € A,b € B}. In other words, we have that the collection of all
pairs of the form (a,b) for a € A and b € B forms a semigroup. Recall that a semigroup is an algebraic
structure consisting of a set together with an assocaitive binary operation [}

Now, let e4 and ep respectively denote the identity elements for A and B. Consider the ordered pair
(ea,ep) in the codomain of the binary operation o = o4, 5. Letting a € A and b € B be artbirary, observe
that ¢p(ea) = ea since ¢, must be an automorphism of A. Also observe that since

¢:B - Aut(A)
is a group homomorphism, we have that

Gep = 1d = idaye(a) = €Aut(4);
letting
id = idAut(A) = eAut(A):A - A

denote the identity automorphism on A whereby
id(a) =a
for all a € A. We thus have that:

(ea,ep)o(a,b) = (eade,(a),epd)
= (eades(a),b)
= (eaid(a),d)
= (eqa,b)
= (a,b).

2See https://en.wikipedia.org/wiki/Semigroup.
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Similarly, we have that:

(a,b) o (ea,ep) = (ady(ea),b-ep)
= (ady(ea),b)
=(a-e4,b)
= (a,b).
We thus have that the identity axiom holds with respect to the semigroup obtained by endowing the set
{(a,b) :a € A,be B} with the binary operation o = o4, p. In other words, the set {(a,b) :a € A,be B}
forms a monoid with respect to this binary operation. Recall that a monoid is an algebraic structure

with a single associative binary operation and an identity element [} Again letting a € A and b € B be
arbitrary, let a=! and b~! respectively denote the inverses of a and b. We claim that the right inverse of

(a,b) is (¢p-1(a7t),b71):

(a,b) o (¢p1(a™),07) = (adp(dp-1(a™)),b-b7")
= (agp(dp1(a™")),en)
= (appp1(a™'),ep)
= (a¢e, (a7'), ep)
=(a-id(a'),ep)

1’ eB)

=(ea,eB).

=(a-a”

Similarly, we find that the left inverse of (a,b) is also equal to (¢p-1(a=t),b71):

(¢p-1(a™),07) 0 (a,b) = (dp-1(a™")@p1(a),b7'D)
= (¢p1(a)gp1(a),ep)
= (¢p-1(a"'a),ep)
= (¢p-1(€a),eB)
= (ea,ep).

We thus find that the monoid obtained by endowing the set {(a,b) : a € A,b € B} with the operation o
forms a group.

Exercise 1.55. Construct morphisms « and 3 such that the sequence
{1}—>AL>A><¢BLB—>{1}.
is an exact sequence.

Solution 1.56. Recall that a sequence

fi f2 f3 fn

Go

G, Go

G

of groups and group homomorphisms is said to be exact if the image of each homomorphism is equal to
the kernel of the next, i.e.,

im(f;) = ker(fis1)

3See https://en.wikipedia.org/wiki/Monoid.
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for all indices ] Tt is natural to consider the mapping
a:A— Axy B

whereby
a(a) = (CL, 63)

for all a € A. Letting a,as € A, we have that:

a(ar) - alaz) = (a,eg) - (az, ep)
= (a10e(a2), epen)
= (a1¢e3(a2),63)
= (a1id(az),ep)
= (a1a2,€B)
= a(ajaz).

We thus have that « is a group homomorphism in this case. Observe that the image im(«) of the
morphism

a:A— Axy B
is the set of all expressions of the form (a,ep) where a € A. Now define
B:Ax,B— B
so that
B(a,b) =b

for all a € A and b e B. Letting ay,as € A and by, by € B, we have that:

B((a1,b1) - (az,b2)) = B((a1¢y, (az),b102))
= byby

=5(a1,b1)'5(a2,bz)~

Now observe that the kernel ker(/5) of the morphism /3 is precisely the set of all expressions in A x, B
of the form (a,ep) for a € A. So, we have that im(«) = ker(/3), thus establishing an exact sequence of
the desired form.

Exercise 1.57. Letting G be a group of prime power order, with |G| = p®, prove that if H < G, then
Ng(H) + H.

Solution 1.58. Find a proper normal subgroup K < GG and K < H such that K is maximal and that
G//K is not trivial. Since
K<aH<G,

we have that

H|/K <G/K.

Now, since G is of prime power order, we have that the quotient group G/K is also of prime power
order. So the center Z(G/K) of G/K is nontrivial. So there exists a non-identity element zK in the
center Z(G/K) of G/K, with z ¢ K since 2K # eK.

4See https://en.wikipedia.org/wiki/Exact_sequence.
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Now, observe that for h € H, we have that hKK € H/K. Since
H|/K <G/K,
we are thus lead to consider the product
(zK)(hK) e G/K.
Since z is in the center of G/K, we have that:
zhK = (zK)(hK) = (hK)(zK) = hzK € G/K.

So, since

2hK =hzK € G/ K,

we have that
hK =z 'hzK.

Therefore,
2 ‘hzehK chH =H.

But recall that h € H is arbitrary. We thus find that
zhz e H
for all h e H. Since G is finite, we have that Ng(H) = Mg(H). So, we have shown that z € Ng(H).

But furthermore, we claim that z cannot be in H. By way of contradiction, suppose that z € H. We
thus have that z ¢ K and z € H. We claim that this contradicts the maximality of K.

To show this, let L denote the smallest subgroup of GG containing z and containing the elements in
K. Since z ¢ K, we have that K ¢ L. We have that L < G by definition of L. Using the fact that
2K € Z(G|K) together with the fact that K < G, it is easily seen that each element in L must be of the
form z"k for some k € K and some power z, of z. Letting g € G, consider the coset Lg. Let z"kg be an
element in this coset. But then this element is equal to

2" gk’
for some k' € K, and this element is equal to
gz"k"
for some k" € K, since powers of zK are also in the center of G/K. So we have shown that
(2"k)g = g(="k")
for some element £ € K, thus proving the inclusion whereby
LgcgL.

A symmetric argument may be used to prove the reverse inclusion. A similar argument may be used to
prove that L 4 H. Observe that H < G. But since z € H by assumption, and since

K <H<G,

we have that

L<H«<G,

which also shows that G/L is nontrivial. But this contradicts the maximality of K, thus proving that z
cannot be in H.
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Exercise 1.59. Illustrate Sylow’s theorems using the Sylow p-subgroups of Sj.

Solution 1.60. The Sylow 2-subgroups of S3 are given below:

{
{
{

We thus have that ny = 3. So, ny > 1, ny divides the order |G| = 6 of G, and ny = 1(mod p). Also, all
Sylow 2-subgroups of S5 are conjugate, as illustrated below:

— = = =
_= W DWW W W
—
| IN |
R

NN W~ N

DN DO DO DO DN DO
w W W W w W
W R == N

12 3\[(1 2 3\ (1 2 3\\(1 23\ ({12323
2 3 1)1\1 2 3)°\2 1 3)[{2 3 1] “1\1 2 3)°\1 32
12 3\ ({1 2 3\ (1 2 3\\(1 23\ ({1 23\(123
31 2)1\1 2 3)°\2 1 3)f\3 12 T\t 23)\321
12 3\[(1 2 3) (1 2 3 2 3\ [(1 23\ (123
2 3 1)1\1 2 3)°\1 3 2fJf{2 3 1) “1\1 2 3)'\3 2 1)[

There is a unique Sylow 3-subgroup of S3, namely:

(R N | B

We thus have that ng = 1. So ng > 1, n3 divides the order |G| = 6 of G, and nz = 1(mod3). Since there is
a unique Sylow 3-subgroup of S5, it is trivial that Sylow 3-subgroups of S5 are conjugate.

Exercise 1.61. Write in the details of the proofs of the Sylow theorems given in the handoutP] from the
October 4t lecture

Solution 1.62. We begin with an expanded proof of the following result.
Proposition 1.63. Let G be a p-group acting on a (finite) set E. Then
|B| = [Fixg(E)] (mod p).
Proof. Since E is a G-set, we may write G as a disjoint union of orbits as follows, letting n € N:
E = Orbitg(x1) w Orbitg(xs) w--- v Orbitg(z,).
By the orbit-stabilizer theorem, we thus have that

1] = 3 |Orbita(a)| = 3 =%

i=1 i=1 |StabG xl)|

®See http://garsia.math.yorku.ca/~zabrocki/math6121f16/documents/100616sylows.pdf.
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But since Stabg(z;) is a subgroup of GG, by Lagrange’s theorem, each expression of the form %

must be of order pb. Letting
o GxFEF—-F

denote the group action corresponding to the G-set F, recall that
Fix(9)={x e EF:gex=x}
for g € G. Similarly, we define
Fixg(E) =Fix(G) ={z e E:VgeG gex =x}.

We claim that: Fix(G) = {z; : 1 <i < n,b; = 0}. Equivalently: Fix(G) = {z € E : |G| = |Stabg(x)|}.
Equivalently:
Fix(G) ={z € E: G = Stabg(z)} .

Our strategy to prove the above equality is to use mutual inclusion. Let y € E be such that Vg € G gey = v,
so that y € Fix(G) is arbitrary. Given that Vg € G g ey = y, consider the expression Stabg(y). By
definition of the stabilizer of an element, we have that

Stab(y) = {geG:gey =y},

but since Vg € G g ey =y in this case, we have that Stab(y) = G. So, given y € Fix(G), we thus have
that y € {z € F: G = Stabg(x)}, thus proving the desired inclusion whereby

Fix(G) c {x € E: G = Stabg(x)}.

Conversely, let
ye{zeFE:G=Stabg(x)}

be arbitrary. Since G = Stabg(y), we have that G = {g € G : gey = y}, and we thus have that
VgeG gey=y. Since y € F is such that Vg e G g ey =y, we thus have that

yeFix(G)={reF:VgeG gex =1},
thus proving that the reverse inclusion whereby
{z € E:G =Stabg(z)} c Fix(G),
thus proving that Fix(G) = {z;: 1 <i<n,b; =0}.

Now, recall that
s |Gl
£l ; |Stabg (z;)|

by the orbit-stabilizer theorem. Rewrite this equality as follows:

o g
El=S__ 1=
2] ;|Stabg(mi)|
e e
= —+ S
2 Babe@)” L, Btabe()
[Stabg (z;)|=|G| [Stabg (x;)|<|G|
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] ) c
o R 2 iSwbe()]

1<i<n 1<i<n
\staba(zol-iel | seabaei<cl
G|
\ 2, 2, Biabe()
Stabg (z;)=G [Stabg (z;)|<|G|
G|

Fix(G)| + SN b
Fix(@l 2 Saba)
[Stabg (x;)|<|G|

By Lagrange’s theorem, it is clear that each expression of the form

G|
|Stabg ()|

such that [Stabg(x;)| < |G| vanishes modulo p, thus proving that

|E| = [Fix(G)| (mod p)
as desired. O
Corollary 1.64. If pe N is a prime, and m € N is such that p does not divide m, then

("

o )Em(modp).

Proof. With respect to Proposition [I.63] let G be the cyclic group

Corm = Lpnm = L] (p"m) L.

Exercise: Prove that there exists a subgroup H < G of order p».

We begin by remarking that the result given in the above exercise follows immediately from the Fun-
damental Theorem of Cyclic Groups, which is formulated as follows in Joseph Gallian’s Contemporary
Abstract Algebra:

Fundamental Theorem of Cyclic Groups: “Every subgroup of a cyclic group is cyclic. Moreover, if
|{(a}| = n, then the order of any subgroup of {(a) is a divisor of n; and, for each positive divisor k of n,
the group (a) has exactly one subgroup of order k — namely, (a™/*).”

Letting 1 € Z/(p"m)Z denote the coset 1+ (p™m)Z in the quotient group Z/(p"m)Z, we may thus write
(1> = anm.

Since p™ divides p®m, by the Fundamental Theorem of Cyclic Groups, we thus have that the group (1) =
Zyny has exactly one subgroup of order pm, namely (m). Without resorting to using the Fundamental
Theorem of Cyclic Groups, it is easily seen that (m) is a cyclic subgroup of (m) of order p™. In particular,
it is easily seen that

(m)={m,2m,3m,...,(p" - 1)m,0}
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since the expressions in
{m,2m,3m, ..., (p" -1),m}

do not vanish modulo p®m because p does not divide m by assumption, and since the elements in
(m)={m,2m,3m,...,(p"-1),m,0}

must be pairwise unequal as is easily verified using our assumption that p does not divide m.

So, let H = (m). Let X be the set of subsets S € G such that |S| = p. Note that |X| = (p;;”). Let H act
on X by left addition. Let
o HxX—>X

denote this action.
Exercise: Prove that S € Fix(H) if and only if S is a left coset of H.

Suppose that S is a left coset of H. Let g € G, and write S = {g+h:h e H}. Since H is a (normal)
subgroup of order p™, we have that g + H is also of order p®. We thus have that S € X. Now let i € H,
and consider the expression i e S

1S =i+95
=i+{g+h:heH}
={i+g+h:heH}
={g+i+h:heH}
={g+j:jeH}
=5.
We thus have that if S is a left coset of H, then S in the following set:
Fix(H)={T e X:VieHieT=T).
Conversely, suppose that:
SeFix(H)={TeX:VieH ieT=T}.

We thus have that:
VieH 10¢5=85.

Therefore,
VieHi+S=5.

Write:
H={hy,ho,..., hpn},

for the sake of convenience, and write:

S ={s1,82,...,8m}.

Now let f:{1,2,...,p"} - {1,2,...,p"} be a mapping defined as follows, using the fact that Vi e H i+5 =
S:

hisi = Sr(1),
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hosi = Sr(2),

hpn81 =Sfpn)-
Letting 7 and j be elements in the domain of f, it is clear that f is injective, since:
F(@) = f(G) = sy = 556
> hz‘Sl = hjSl
== 1=].
So, since f is an injective map from {1,2,...,p"} to {1,2,...,p"}, we may thus deduce that f is bijective.

Since f is bijective, it is thus clear that
s1+H=2S8,

thus proving that S is a left coset of H.

So, we have shown that the set Fix(H) is precisely the set of left cosets of H. Now, by Lagrange’s
theorem, we have that the number of left cosets of H is m. So the above corollary thus follows from
Proposition [1.63] L

Theorem 1.65. The center of a p-group G is nontrivial.

Proof. Let GG act on itself by conjugation. In particular, let

o (GxG -G
denote the action whereby

geh=ghg™
for all g, h € G. It is clear that e is indeed a group action, since

eog:ege_lzg

for g € G, and since the following holds for g, h,i € G:
(gh) e i=(gh)i(gh)™
= ghih g™
= g(hih™)g™!
=g(hei)g™
=ge(hei).

Exericse: Show that Fig(G) = Z(G) with respect to the conjugation action on G.

To show that Fix(G) = Z(G), rewrite the expression Fix((G) in the following manner:

Fix(G)={ieG:VheG hei=1i}
={ieG:VheG hih™' =i}
={ieG:VheG hi=ih}
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= Z(G).
Now, by Proposition [I.63, we have that
|G| = [Fix(G)| (mod p),
and thus
|G| =12(G)] (mod p),

and thus
1Z(G)| = |G| (mod p).
We thus have that
1Z(G)| = 0(mod p),
thus proving that p divides the order of Z(G). O]

Theorem 1.66. (1%t Sylow theorem): Sylow p-subgroups always exist.

Proof. Let X be the set of subsets of G of order p" and let G act on X by left multiplication. Let
oGxX—-X

denote the corresponding action whereby
gew=gx

for g e G and = € X. As above, let expressions of the form z; denote the representatives of the orbits.

Since |X| = (p;f), as shown above, we have that |X| = m(mod p). So p does not divide |X|. So there
exists at least one expression of the form x; such that p does not divide % Now, what is the order
of G? It should be clarified that the order |G| of G is such that p is a prime factor with multiplicity n of
|G|. Since the prime power p" divides |G| but p**! does not divide |G|, and since %
number by Lagrange’s theorem, and since % is not divisible by p, we may deduce that p™ divides

|Stabg(2;)|. We remark that we are implicitly using the Fundamental Theorem of Arithmetic.

is a natural

Exercise: Explain why [Stabg(z;)| = |[{zy : z € Stabg(x;) }|.

Letting y € x;, to show that
|Stabg(x;)| = |{zy : z € Stabg(x;)}|,

begin by observing that Stabg(x;) is a subgroup of G. Now consider the expression
{zy: z e Stabg(x;)} .
It is clear that the above set is precisely the following right coset:
(Stabg(z;))y = {2y : z € Stabg(x;)} .

From our previous proof of Lagrange’s theorem, which is available through the course webpage for
MATH 6121, we know that the order |Stabg(x;)| of the subgroup Stabg(z;) must be equal to the order
of the coset (Stabg(x;))y, thus proving that

|Stabe(;)| = |{zy : 2 € Stabg (2;) }],
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as desired.
Now by definition of the stabilizer of an element, we have that:
Stabg(z;)={geG:gex;=x;}.
Denote z; as follows:
z; = {wy, wa, ..., Wy}

Now, let z € Stabg(z;). We thus have that z € G, and z e z; = ;. Now consider the expression zy.
Since y € x;, and since z e x; = x;, we have that zy =y’ for some 3’ € x;. So, we have that the set of all
expressions of the form zy where z is in Stabg(x;) is contained in ;. We thus have that

|Stabg(x;)| = [{zy : z € Stabg(z;)}| < |,

and we thus have that
|Stabg (z;)| < p™.

But recall that we used Lagrange’s theorem to prove that p” divides the order of the subgroup Stabg(x;).
We thus have that
|Stabg(x;)| > p™,

thus proving that
|Stabg ()| = p™.

But recall that Stabg(z;) forms a subgroup of G with respect to the underlying binary operation on G.
We thus have that Stabg(z;) is a subgroup of G of order p™.

Recall that a finite group is a p-group iff its order is a power of p. Recall that a Sylow p-subgroup of G
is a maximal p-subgroup of GG, i.e. a subgroup of G that is a p-group that is not a proper subgroup of
any other p-subgroup of G. As indicated above, the order |G| of G is such that p is a prime factor with
multiplicity n of |G|. Therefore, since Stabg(x;) is a subgroup of G of order p", we have that Stabg(x;)
must be a Sylow p-subgroup, because by Lagrange’s theorem, this subgroup cannot be properly contained
in any other p-subgroup of G, since the multiplicity of the prime factor p of |G| is n. ]

Theorem 1.67. (2" Sylow theorems) All Sylow p-subgroups are conjugate to each other.

Proof. Let T and S be two subgroups of order p®. Observe that S < G. Let T act on the left cosets of
the quotient group G/S by left multiplication. Let

T x(G|S)—>G/S
denote the corresponding group action whereby
te(g5)=(tg) S
for t € T and g € G. Since T is a p-group, by Proposition [1.63] we have that
|G/S| = |[Fixr(G/S)| (mod p) .

Now recall that G is a p-group, such that the multiplicity of the prime p with respect to the prime
factorization of |G| is n. Since S is a Sylow p-subgroup, i.e., a maximal p-subgroup, it is clear that p
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does not divide the order |G/S| of the quotient group G/S. We may thus deduce that Fixy(G/S) is
nonempty. So, let ¢S € Fixp(G/S).

Exericse: Show that if ¢S € Fixp(G/S), then T ¢ gSg!.

To show that
gS € Fixp(G/S) == T c gSg™*,

begin by rewriting the expression Fixy(G/S) as follows:
Fixp(G/S)={hSeG[S:VteT te(hS)=hS}.

We thus have that:
VieT te(gS)=gS.

So, for each element t € T, since tge = tg must be in ¢S5, we have that the following holds: for each
element ¢ € T, there exists a corresponding element s = s; in S such that tge = tg = gs. So, for each
element ¢ € T, there exists a corresponding element s = s; in .S such that ¢ = gsg~!. We thus have that
T c gSg~! as desired. But since T is a p-group of order p”, and since ¢gSg~! is of order p”, we thus have
that T'= gSg~! as desired. O

Theorem 1.68. (3" Sylow Theorem) Let n, be the number of Sylow subgroups, then n, divides the
order of G

Proof. Let G act on the set of all Sylow p-subgroups of G by conjugation. By the 2" Sylow Theorem,
we know that there is a unique orbit with respect to this group action. So, letting S denote a fixed
Sylow p-subgroup, we have that Orbits(S) consists precisely of all the Sylow p-subgroups of G. Now,
by the orbit-stabilizer theorem, we have that

. G
np = |OTbItG(S)| = m
So, since
ny - [Stabg (5)| = |G,
we thus have that n, divides the order of GG, as desired. m

Theorem 1.69. (4™ Sylow Theorem) n, = 1(modp).

Proof. Let Syl,(G) denote the set of all Sylow p-subgroups of G, and let S € Syl (G). Let S act on
Syl,(G) by conjugation. By Proposition [1.63, we thus have that

n, = ‘Sylp(G)| = ‘FixS(Sylp(G))‘ (mod p) .

Exericse: Show that if P € Fixg(Syl,(G)), then S ¢ Ng(P).

By definition of the normalizer of a subset, we have that:
Ne(P)={geG:gP = Pg}.

Assuming that P is in Fixg(Syl,(G)), we have that

VseSseP=P
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Therefore, Vs € S sPs™! = P. That is,
VseS sP=Ps.

So, for each element s in S < (G, we have that sP = Ps. So it is clear that each element s in S must
necessarily be in Ng(P). This proves that S ¢ Ng(P). Since S is a subgroup of G, and since Ng(P) < G,
we thus have that:

S < Ng(P)<G.

Now, since S and P are both Sylow p-subgroups of Ng(P), by the first Sylow theorem, we have that
S = gPg~! with g € Ng(P), and we thus have that S = gPg~! = P. O

Exercise 1.70. Does S; have a composition series with composition factors of the form (Zs,Zy,Z3)?
Does Sy have a composition series with composition factors of the form (Zs,Zs,Z2)?

Solution 1.71. As discussed on the course webpage, the SageMath input
[H.order() for H in SymmetricGroup(4).subgroups()]
produces the following integer sequence:
(1,2,2,2,2,2,2,2,2,2.3,3,3,3,4,4,4,4,4,4,4,6,6,6,6,8,8,8,12,24).

We thus find that ny = 3, meaning that a subgroup of S, of order 8 cannot be a normal subgroup. This is
easily seen using Sylow theory in the following way: we know that Sylow p-subgroups are all conjugate,
so if there are multiple Sylow p-subgroups, i.e., if there are at least two distinct Sylow p-subgroups A
and B, we have that

gAg~t =B

for some ¢ € G, which shows that
gA=Bg+ Ag,

which shows that A is not normal. So, as indicated on the course webpage, since ny = 3, it is impossible
to have a composition series of Sy with composition factors of the form (Zs,Zs,Zs3).

On the other hand, is it possible that S, has a composition series with composition factors of the form
(Z3,72,75)? Begin by observing that A, < Sy, with S;/ Ay 2 Z,. Tt is easily seen that the only subgroup
of Sy of order 12 is Af] But it is also easily seen that A4 does not have any subgroup of order (] We
thus find that it is impossible for S; to have a composition series with composition factors of the form
(Z3,7,75).

Exercise 1.72. Show that the function [-,-] constructed in the proof of Maschke’s theorem is a scalar
product.

Solution 1.73. Recall that a module is basically a “vector space over a ring”. A module is decomposable
if it can be written in the form M ¥ W&V, where W and V are proper nontrivial submodules of M. Also
recall that a module is reducible if there exists a proper non-trivial submodule. According to Maschke’s
Theorem, over C, a module M is an irreducible module if and only if M is decomposable.

So, let M be a C-module, and let W be a proper non-trivial submodule. We want to find a submodule
V such that MW e V.

6See http://groupprops.subwiki.org/wiki/Subgroup_structure_of _symmetric_group:S4.
"See http://groupprops.subwiki.org/wiki/Subgroup_structure_of_alternating_group:A4.
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Fix a basis B of M. Define the scalar product (-,-) as follows:

(0, 1) = [0]g[u]s.

Now, let
¢:G — Aut(M)

be a representation of the finite group G over a field F' in which |G| is invertible. Define the mapping
[-, ] MxM—-C

as follows:

[0, 4] |G| > (0(9) (D), 6(9)(1))-

geG

We claim that this mapping is a scalar product. For the sake of clarity, let ¢(g)(4) and ¢(g)(?) be
denoted as follows:

[6(9) ()]s = | 2

[6(9) ()]s = "2

Now consider the expression [, 7].

T6,0] = = S (69) (@), 6(9)(®))
|G| geG

1 - -
== 2 (6(9)(@), ¢ (9) (D))
|G| geG
G > [6(9) (@)E[¢(9) ()]s
Gl &
-Ug-
- LS g, ]|
|G g
[on ]
-Ui_
- S|
|G| geG
vy |
_ L Z udv? + udvd + -+ udol
|G| geG
- L > wvf + udvg + - + udvi,
|G| geG



We thus find that the mapping

2v1u1+v2u2 et vdud
gEG
uy
1 uy
:@Z[Uf,vg,...,vz] “2.
geG u’,gl
@ {¢(9)(), 9(9)(0))
geG
= [0, a].
[,-]:MxM—-C

satisfies the conjugate symmetry axiom. We claim that the linearity in the first argument of [-,-] is
inherited from the linearity in the first argument of (-,-) and the linearity of mappings of the form ¢, for
g € GG. This is illustrated below, letting a be a scalar, and letting ¥; and ¥, be elements in the module

M.

[171 + 272, U

- é > (0(0)(aD). 6(9)(3)

|G| ) 2 a0 @.6(9)(@)

|G| HEC:; a(d(9)(0), (9) (@)

|G‘ Z d(9)(0), ¢(g)(u))

= a[v,1].

[ad, 1]

> {0(9) (01 + T2), ¢(g) (1))

|G| geG

|G‘ 2 (9(9)(01) + 6(9) (22). 6(9) (1))

- &1 2 (100 @).0(0) (D) + (6(0) ). 6(0) (7))
mg; ¢(9)(B1), p(g)( |G|g;: 6(9)(72), 6(9) (7))

[01, 4] + [Ug, 4]

Since (u, ) >0, we find that

(¢(9) (@), ¢(g)(@)) 2 0

for g € G, so it is clear that [, @] > 0. Similarly, we have that:

& SO @00 (@) = 0= T(6(5)(0).0(0) (1) =

geG

geG
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= VgeG (d(g9)(1), ¢(g)(u)) =0
> VgeG ¢(g)(i) = On

<~ U= OM
To show why the biconditional statement
VgeG ¢(g)(i) =0y < 1 = Oy,

begin by assuming that Vg € G ¢(g)(@) = Op;. In particular, letting e = e denote the identity element
in GG, we have that

¢e(a) = 6M'
Since

¢:G — Aut(M)

is a group homomorphism, we have that ¢ must map the identity element e = e of G to the identity
morphism

in the codomain of ¢. So, in the case whereby
¥ge G ¢(g)(a) = O,
we have that:
e (i) = Oy — id(a) = Ot
= i =0p.
We thus find that the implication whereby
Vg e G ¢(9)(a) = 0n =1 = 0n

holds. Conversely, suppose that the equality @ = 05, holds. Since linear mappings map zero vectors to
zero vectors, and since ¢(g) € Aut(M) for all g € G, we thus have that

=0y = VgeG ¢(g)() =0y
as desired.
Exercise 1.74. Prove that [¢(h) (D), ¢(h)(u)] = [0, 14].

Solution 1.75. By definition of the mapping
I:.7.:|.]\/[><]\4_)(C7
we have that:

1

[0(h)(9), ¢(h)(@)] = @l >_(6(9)(@(h)(9)), (9) (6 (h)(10)))-

geG

It is convenient to write ¢(g) = ¢, and ¢(h) = ¢,. We thus arrive at the following equality:
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D (bg(dn(D)), bg(dn(10))). (1.1)

[¢n (D), Pn(t)] = |G| 2

But recall that the mapping

¢:G - Aut(V)
is a group homomorphism. We thus have that the equality given in (1.1)) may be rewritten as follows:
Z Ggh (0), ¢gh(u)>

|G| geG

But recall that the mapping on the underlying set of G whereby g — g-h for fixed h € GG is a permutation
of the underlying set of G'. Therefore,

[¢n(D), Pn(1i)] =

[¢n (D), P (T |G| > (g (D), dgn(id))

geG

Z ¢i(0), (1))

7,€G
- @,a].

Il

Exercise 1.76. Recall that for groups A and B and 7: B - Aut(A), then the group A x., B is the set
of pairs {(a,b) : a € A,b e B} with product (a,b) 4., 5 (a’,b') = (ay(a’),b0’). Find an example of p, g,
and v such that Z, x, Z, is solvable but not abelian.

Solution 1.77. We begin by proving a useful preliminary result. We claim that given a finite group
G, if G has a subgroup H of index 2, then H must be normal in G. For fixed h; and hs, the mappings
h~ hy-h and h— h-hy on H are both permutations of H. So it is clear that hH = Hh for h € H. But
we also know that the mappings g = hy-g and g = g- he on G are both permutations of G. We may
thus deduce that the mappings g — hy-g and g = g-hy on G~ H are both permutations of G\ H. We
thus arrive at the following incomplete Cayley table, where mappings denoted using the symbol p or the
symbol p are permutations of G N~ H, writing H = {hy,ho,..., h,} and G\ H = {g1,92, ..., 9n}, noting
that |H|=|G ~ H|.

O h/l h2 e hn gl g2 cee gn
h 9ot | 9p2 | | 9ot
h2 gpé gp% gp,g
hn, 9oy | 9p2 9pn
g1 | Gut | Gud | | Gul
g2 gu% g,u% | Gu2
9n gu’f gug | Gun

But since
{g;ﬂfg/ﬂé" < 7gu£l} = {ngi’gpé?' s 7gp%}
for all indices i, we thus find that
gH =Hyg
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for all g e G~ H as desired.

Now, let p = 3, let g = 2, and define 7:Zy — Aut(Z3) so that 7 is the identity automorphism on Zs, and
~1 is the automorphism on Zs mapping each element in Z3 to its inverse. As discussed in class, we have
that

Ly %y Log = g %y Ly = D3 = S,

We adopt the notation indicated below for dihedral groups introduced in class:
D3 ={1,a,a* b,ba,ba*}.

It is clear that the set {1,a,a?} forms a cyclic subgroup of D3 which is isomorphic to Zs. From the
preliminary result given towards the beginning of our present solution, since {1,a,a?} is a subgroup
of D3 of index 2, we have that this subgroup must in fact be a normal subgroup of D3. This is also
easily seen from a geometric perspective in the sense outlined as follows. Observe that the elements
in the cyclic subgroup {1, a,a?} are precisely the orientation-preserving isometries in Ds. Recall that
the composition of two orientation-preserving isometries must be an orientation-preserving isometry.
Similarly, the composition of an orientation-preserving isometry and an orientation-reversing isometry,
or vice-versa, yields an orientation-reversing isometry. Finally, the composition of two orientation-
reversing isometries must yield an orientation-preserving isometry. It is thus seen that the rotation
subgroup {1,a,a?} must be the kernal of a homomorphism from D3 to Z,, thus showing that {1, a,a?}
forms a normal subgroup of D3, as desired.

We thus arrive at the subnormal series given below:

{1} < {l,a,a*} < D3 2 Z, %, Z,.

Of course, the group
Zs NWZQE'D?,E'Sg

is not abelian. But given the subnormal series
{1}« {1,a,a®} < D32 Z, %, Z,

and given that

Dg/{l,a,a2} gZQ
and

{1,(1, G’Q}/{l} gZ?n

we have that the above subnormal series is a composition series whose composition factors are abelian.
We thus have that Z, %, Z, is solvable but not abelian.
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