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Exercise 1: Prove that if φ : G → H is a homomorphism, then im(φ) ≤ H
with respect to ◦H , where im(φ) = {φ(g) : g ∈ G}.

Proof: Given a subset S of the underlying set of a group T , to prove that S
forms a subgroup of T , it suffices to prove that S is closed under the underly-
ing binary operation of T and that S is closed under inverses with respect to
this operation. This property concerning subgroups is sometimes referred to
as the Two-Step Subgroup Test (see Joseph A. Gallian’s Contemporary
Abstract Algebra).

So, let g1 and g2 be arbitrary elements in G, so that φ(g1) and φ(g2) are
arbitrary elements in im(φ). Since φ : G → H is a homomorphism, we have
that

φ(g1) ◦H φ(g2) = φ(g1 ◦G g2) ∈ im(φ),

thus proving that im(φ) is closed with respect to ◦H . Similarly, we have that

(φ(g))−1 = φ(g−1) ∈ im(φ)

for g ∈ G, since

(φ(g))−1φ(g) = eH = φ(eG) = φ(g−1g) = φ(g−1)φ(g)

since a group homomorphism must map a group identity element to another
group identity element, since φ(eGg) = φ(g) = φ(eG)φ(g), and thus φ(eG) =
eH from the equality φ(g) = φ(eG)φ(g).

Exercise 2: Prove that ker(φ) E G, where ker(φ) = {g ∈ G | φ(g) = eH}.

Proof: We begin by proving that ker(φ) ≤ G, using the Two-Step Subgroup
Test described above.

Let g1, g2 ∈ G be such that φ(g1) = eH and φ(g2) = eH , so that g1 and
g2 are arbitrary elements in the kernel ker(φ) of the group homomorphism
φ : G→ H. We thus have that

φ(g1) ◦ φ(g2) = φ(g1 ◦ g2) = eH ◦ eH = eH ,
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thus proving that g1 ◦ g2 ∈ ker(φ). Similarly, since for g ∈ G we have that
(φ(g))−1 = φ(g−1) as discussed above, we have that

(φ(g))−1 = e−1
H = eH

if g ∈ ker(φ) and thus φ(g−1) = eH if g ∈ ker(φ), thus proving that ker(φ) ≤
G.

Now, let k ∈ ker(φ), and let i ∈ G. It remains to prove that: iki−1 ∈ ker(φ).
Equivalently, it remains to prove that φ(iki−1) = eH . Using the fact that
k ∈ ker(φ), we have that

φ(iki−1) = φ(i)φ(k)φ(i−1) = φ(i)φ(i−1) = φ(i ◦ i−1) = φ(eG) = eH ,

thus proving that ker(φ) E G.

Exercise 3: Given a group G and a group action • : G × G → G given by
G acting on itself canonically, prove that the mapping which sends g ∈ G to
the permutation in SG given by the mapping h 7→ g • h is an isomorphism.

Proof: Let ψ denote the mapping which maps g ∈ G to the permutation in
SG given by the mapping h 7→ g • h, letting the codomain of ψ be equal to
im(ψ).

First, we begin by proving that ψ is well-defined in the sense that for g ∈ G,
ψ(g) is indeed an element in the codomain of ψ. For g ∈ G, let σg denote
the mapping σg : G→ G whereby

σg(h) = g • h = g ◦ h ∈ G

for all h ∈ G. The mapping σg must be injective, since

σg(h1) = σg(h2) =⇒ gh1 = gh2 =⇒ h1 = h2,

and the mapping σg : G → G must be surjective, since for k ∈ G, we have
that: σg(g

−1k) = g ◦ g−1 ◦ k = k ∈ G, thus proving that σg ∈ SG, and thus
proving that σg is in the codomain of ψ.

Now let g1, g2 ∈ G, and let σg1 : G → G and σg2 : G → G be such that
σg1(h) = g1h ∈ G and σg2(h) = g2h ∈ G for all h ∈ G. Suppose that
ψ(g1) = ψ(g2). That is, σg1 = σg2 . That is, g1h = g2h for all h ∈ G. Letting
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h = e, we thus have that ψ(g1) = ψ(g2) =⇒ g1 = g2, thus proving that ψ is
injective.

Since we constructed ψ so that the codomain of ψ is equal to the image of
ψ, we have that ψ is surjective by definition. Since ψ is bijective, it remains
to prove that ψ is a group homomorphism.

Again let g1, g2 ∈ G. We thus have that ψ(g1g2) is the mapping σg1g2 : G→ G
which maps h to g1g2h. But it is clear that the composition ψ(g1) ◦ ψ(g2)
maps h to g1(g2h) = g1g2h, thus proving that ψ is an isomorphism.

Exercise 4: For all g1, g2 ∈ G, show that either g1H = g2H or g1H ∩ g2H =
∅.

Proof: Let g1, g2 ∈ G. Our strategy is to show that if g1H∩g2H is nonempty,
then g1H = g2H. We remark that we are using the logical equivalence
whereby (¬p)→ q ≡ q ∨ p.

Suppose that g1H ∩ g2H is nonempty. Note that we are letting H ≤ G. So
there exists an element in the following intersection:

{g1h : h ∈ H} ∩ {g2h : h ∈ H}.

We thus have that there exist elements h1 and h2 in H such that

g1h1 = g2h2 ∈ g1H ∩ g2H.

Therefore,
g1h1h

−1
2 = g2.

Writing h3 = h1h
−1
2 ∈ H, we thus have that g1h3 = g2. We thus have that

the left coset g2H is equal to {g1h3h : h ∈ H}. But since the mapping from
H to H which maps h ∈ H to h3h is bijective (see previous exercise), we
have that

g2H = {g1h3h : h ∈ H} = {h1i : i ∈ H} = g1H

as desired.

Exercise 5: Show that the canonical mapping φg : H → gH is a bijection,
so that, as a consequence, we have that |gH| = |H|. Another consequence of
this result is that |H| divides |G| (Lagrange’s theorem).
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Let H ≤ G, and let g ∈ G, and let φg : H → gH be such that φg(h) = gh ∈
gH for all h ∈ H. We have that

φg(h1) = φg(h2) =⇒ gh1 = gh2 =⇒ h1 = h2,

thus proving the injectivity of φg. Similarly, it is clear that φg is surjective,
since for gh ∈ gH we have that φg(h) = gh. We thus have that |gH| = |H|
as desired.

We now use this result to prove Lagrange’s theorem. From our results from
Exercise 4, we have that two cosets g1H and g2H are either disjoint or
equal. Therefore, since g ∈ gH for all g ∈ G, we have that G may be written
as a disjoint union of cosets, say

G = g1H ∪ g2H ∪ · · · ∪ gnH

where n ∈ N. But since |gH| = |H| for g ∈ G, we have that |G| = n|H|,
thus proving Lagrange’s theorem.

Exercise 6: For g ∈ G, let order(g) denote the smallest n ∈ N such that
gn = e. Prove that order(g) divides |G|.

Proof: It is easily seen that the set

{1, g, g2, . . . , gorder(g)−1}

forms a cyclic subgroup of G. By Lagrange’s theorem, proven above, we
have that the order of this cyclic subgroup divides |G|, and we thus have
that order(g) divides |G| as desired.

Exercise 7: Prove that Stab(x) is a subgroup of G.

Proof: We again make use of the Two-Step Subgroup Test described above.

Let g1, g2 ∈ G be such that g1 • x = x and g2 • x = x, so that g1 and g2
are arbitrary elements in Stab(x). Now consider the following expression:
(g1g2) • x. By definition of a group action, we have that

(g1g2) • x = g1 • (g2 • x) = g1 • x = x,

thus proving that Stab(x) is closed under the underlying binary operation of
G. Letting g ∈ G be such that g • x = x, since (g−1g) • x = e • x = x by
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definition of a group action, we have that g−1 • (g •x) = x, thus proving that
g−1 • x = x as desired, with Stab(x) ≤ G.

Exercise 8: Prove that a G-set X is a disjoint union of orbits.

Proof: Let x be a G-set, and let • : G×X → X denote a group action. Let
x, y ∈ X, so that Orbit(x) and Orbit(y) are arbitrary orbits. Suppose that
Orbit(x) ∩Orbit(y) 6= ∅. Let

g1 • x = g2 • y ∈ X

denote an element in the nonempty intersection Orbit(x)∩Orbit(y). We thus
have that

(g−1
2 g1) • x = y.

Therefore,
Orbit(y) = {g • (g−1

2 g1 • x) | g ∈ G}.

Equivalently,
Orbit(y) = {g(g−1

2 g1) • x | g ∈ G}.

Since the mapping whereby g 7→ g(g−1
2 g1) is a permutation of G (see Exer-

cise 3), we thus have that

Orbit(y) = {h • x | h ∈ G},

thus proving that two orbits are either equal or disjoint. Since x ∈ Orbit(x)
for x ∈ X, we thus have that X may be written as a disjoint union of orbits.

Exercise 9: Show that the map

φx : Orbit(x)→ G/Stab(x)

given by the mapping

g • x 7→ gStab(x) ∈ G/Stab(x)

is a well-defined, bijective G-set homomorphism.

Proof: Suppose that g1 • x = g2 • x. Equivalently, g−1
2 g1 • x = x. Therefore,

g−1
2 g1 ∈ Stab(x), so g1 ∈ g2Stab(x), so g1Stab(x) = g2Stab(x) (see Exercise
4). We thus have the mapping φx is well-defined in the sense that g1•x = g2•x
implies that φx(g1 • x) = φx(g2 • x).
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Letting g1, g2 ∈ G so that g1 • x and g2 • x are arbitrary elements in the
domain of φx, we have that

φx(g1 • x) = φx(g2 • x) =⇒ g1Stab(x) = g2Stab(x).

We thus have that there exist elements g3, g4 ∈ Stab(x) such that

g1g3 = g2g4.

We thus have that
(g1g3) • x = (g2g4) • x,

which implies that
g1 • x = g2 • x,

thus proving the injectivity of φx. It is obvious that φx is surjective, since
given a coset gStab(x) in the codomain of φx, we have that φx(g) = gStab(x).

Since
φx((hg) • x) = (hg)Stab(x) = h(gStab(x)) = hφx(g • x),

we have that φx is a G-set homomorphism.

Exercise 10: Prove that if H E G, then G/H is a group where ◦G/H is
defined as g1H ◦G/H g2H = g1g2H.

Assume that H E G. We begin by showing that the operation ◦G/H = ◦ is
well-defined in the sense that the expression g1H ◦G/H g2H does not depend
on the coset representatives of the cosets g1H and g2H. So, suppose that
g1H = g3H and g2H = g4H, letting g1, g2, g3, g4 ∈ G. To prove that the
operation ◦G/H is well-defined, it thus remains to prove that:

g1g2H = g3g4H.

Since g1H = g3H, let g3 = g1h1, where h1 ∈ H. Similarly, since g2H = g4H,
let g4 = g2h2, with h2 ∈ H. So, it remains to prove that

g1g2H = g1h1g2h2H.

But since H E G, we have that gH = Hg for all g ∈ G. Since h1g2 ∈ Hg2 =
g2H, let h1g2 = g2h3, where h3 ∈ H. We thus have that

g1h1g2h2H = g1g2h3h2H.
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But it is clear that
g1g2h3h2H = g1g2H

since the mapping h 7→ h3h2h is a bijection on H. We thus have that

g3g4H = g1g2H

as desired, thus proving that ◦G/H is well-defined.

Since ◦G/H maps elements in (G/H) × (G/H) to G/H, we have that G/H
is a binary operation on G/H. So we have thus far shown that ◦G/H is a
well-defined binary operation on G/H.

The binary operation ◦G/H = ◦ inherits the associativity of the underlying
binary operation of G in a natural way:

g1H ◦ (g2H ◦ g3H) = g1H ◦ ((g2g3)H)

= g1(g2g3)H

= (g1g2)g3H

= (g1g2)H ◦ g3H
= (g1H ◦ g2H) ◦ g3H.

We have thus far shown that ◦G/H is a well-defined associative binary oper-
ation on G/H.

Letting g ∈ G be arbitrary, and letting e = eG denote the identity element
in G, we have that:

(eH)(gH) = (eg)H

= eH

= (ge)H

= (gH)(eH).

Again letting g ∈ G be arbitrary, we have that:

(gH)(g−1H) = (g · g−1)H

= eH

= (g−1g)H

= (g−1H)(gH).
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We thus have that if H E G, then G/H forms a group under the operation
◦G/H given above.

Exercise 11: Show that the mapping φ : G → G/H is a group homomor-
phism, where g 7→ gH and ker(φ) = H.

Since ker(φ) E G as shown above, from our results given in the previous
exercise, we have that G/H is a group with respect to the binary operation
◦G/H .

Now let g1, g2 ∈ G. We thus have that

φ(g1g2) = (g1g2)H = (g1H) ◦G/H (g2H) = φ(g1) ◦G/H φ(g2)

by definition of the well-defined group operation ◦G/H .
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