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Exercise 1: Prove that if ¢: G — H is a homomorphism, then im(¢) < H
with respect to oy, where im(¢) = {¢(g) : g € G}.

Proof: Given a subset S of the underlying set of a group T, to prove that S
forms a subgroup of T, it suffices to prove that S is closed under the underly-
ing binary operation of 7" and that S is closed under inverses with respect to
this operation. This property concerning subgroups is sometimes referred to
as the Two-Step Subgroup Test (see Joseph A. Gallian’s Contemporary
Abstract Algebra).

So, let g; and g, be arbitrary elements in G, so that ¢(g;) and ¢(g2) are
arbitrary elements in im(¢). Since ¢: G — H is a homomorphism, we have
that

¢(91) om ¢(g2) = ¢(g1 °c g2) € im(9),
thus proving that im(¢) is closed with respect to oy. Similarly, we have that
(0(9)™" = d(g7") € im(9)

for g € G, since

(0(9)) ' 0(9) = en = dlec) = o9 "g) = o9 ")o(9)

since a group homomorphism must map a group identity element to another
group identity element, since ¢(eqg) = ¢(g) = d(eq)(g), and thus ¢(eq) =
ey from the equality ¢(g) = ¢(eq)d(g).

Exercise 2: Prove that ker(¢) < G, where ker(¢) = {g € G | ¢(g9) = en}.

Proof: We begin by proving that ker(¢) < G, using the Two-Step Subgroup
Test described above.

Let ¢1,92 € G be such that ¢(g1) = ey and ¢(g2) = en, so that g; and
g2 are arbitrary elements in the kernel ker(¢) of the group homomorphism
¢: G — H. We thus have that

P(g1) 0 #(g2) = ¢(g1 0 g2) = em o ey = e,
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thus proving that g; o go € ker(¢). Similarly, since for g € G we have that
(6(9))"t = ¢(g7") as discussed above, we have that

if g € ker(¢) and thus ¢(g7') = eg if g € ker(¢), thus proving that ker(¢) <
G.

Now, let k € ker(¢), and let i € G. It remains to prove that: iki~! € ker(¢).
Equivalently, it remains to prove that ¢(iki~') = eg. Using the fact that
k € ker(¢), we have that

(ki) = ¢(i)p(k)p(i™") = (i)p(i™") = ¢lioi") = ¢(ec) = em,
thus proving that ker(¢) < G.

Exercise 3: Given a group G and a group action e: G x G — G given by
G acting on itself canonically, prove that the mapping which sends g € G to
the permutation in Sg given by the mapping h — ¢ e h is an isomorphism.

Proof: Let 1) denote the mapping which maps g € G to the permutation in
S given by the mapping h — g e h, letting the codomain of ¢ be equal to

im(1)).

First, we begin by proving that v is well-defined in the sense that for g € G,
1(g) is indeed an element in the codomain of ¢. For g € G, let o, denote
the mapping o,: G — G whereby

ogh) =geh=gohedG
for all h € G. The mapping o, must be injective, since
04(h1) = 04(h2) = ghy = ghy = hy = hy,

and the mapping o,: G — G must be surjective, since for £ € G, we have
that: o,(g k) = gog ok =k € G, thus proving that o, € S, and thus
proving that o, is in the codomain of .

Now let g1,9o € G, and let 04 : G — G and o4 : G — G be such that
o4 (h) = g1h € G and o, (h) = g2h € G for all h € G. Suppose that
¥(g1) = ¥ (g2). That is, o, = 0,4,. That is, g1h = g2h for all h € G. Letting



h = e, we thus have that 1(g1) = ¥(g92) = g1 = go, thus proving that v is
injective.

Since we constructed ¢ so that the codomain of 1) is equal to the image of
1, we have that 1 is surjective by definition. Since ) is bijective, it remains
to prove that v is a group homomorphism.

Again let g1, go € G. We thus have that ¢(g1¢2) is the mapping o,,4,: G = G
which maps h to g1goh. But it is clear that the composition ¥ (g1) o ©(g2)
maps h to g1(g2h) = g1g2h, thus proving that ) is an isomorphism.

Exercise 4: For all g1, g» € G, show that either g;H = goH or g1 HN g H =
.

Proof: Let g1, 92 € G. Our strategy is to show that if gy H Mgy H is nonempty,
then zH = goH. We remark that we are using the logical equivalence
whereby (—p) = ¢=¢qV p.

Suppose that g1 H N goH is nonempty. Note that we are letting H < G. So
there exists an element in the following intersection:

{g1h:h e HYN{gh : h € H}.
We thus have that there exist elements h; and hs in H such that
gih1 = g2ho € g1 H N g H.

Therefore,
gihihy ' = gs.

Writing hs = hihy ' € H, we thus have that gihs = go. We thus have that
the left coset goH is equal to {gihsh : h € H}. But since the mapping from
H to H which maps h € H to hgh is bijective (see previous exercise), we
have that

goH ={gihsh:he Hy ={hyi:i€ H} = g H

as desired.

Exercise 5: Show that the canonical mapping ¢,: H — gH is a bijection,
so that, as a consequence, we have that |gH| = |H|. Another consequence of
this result is that |H| divides |G| (Lagrange’s theorem).



Let H < G, and let g € G, and let ¢,: H — gH be such that ¢,(h) = gh €
gH for all h € H. We have that

¢g(h1) = ¢g(h2) = ghy = ghy = hy = ha,

thus proving the injectivity of ¢,. Similarly, it is clear that ¢, is surjective,
since for gh € gH we have that ¢,(h) = gh. We thus have that |gH| = |H|
as desired.

We now use this result to prove Lagrange’s theorem. From our results from
Exercise 4, we have that two cosets g1H and ¢goH are either disjoint or
equal. Therefore, since g € gH for all g € G, we have that G may be written
as a disjoint union of cosets, say

G:ngUggHU"'UgnH

where n € N. But since |gH| = |H| for ¢ € G, we have that |G| = n|H|,
thus proving Lagrange’s theorem.

Exercise 6: For g € G, let order(g) denote the smallest n € N such that
g" = e. Prove that order(g) divides |G|.

Proof: 1t is easily seen that the set

{17 q. 92’ o ’gorder(g)—l}

forms a cyclic subgroup of G. By Lagrange’s theorem, proven above, we
have that the order of this cyclic subgroup divides |G|, and we thus have
that order(g) divides |G| as desired.

Exercise 7: Prove that Stab(x) is a subgroup of G.
Proof: We again make use of the Two-Step Subgroup Test described above.

Let g1,92 € G be such that g e x = x and ¢, e x = x, so that ¢; and ¢»
are arbitrary elements in Stab(x). Now consider the following expression:
(9192) ® x. By definition of a group action, we have that

(g192) ez =g10(g202) =gr 03 =1,

thus proving that Stab(z) is closed under the underlying binary operation of
G. Letting g € G be such that g e z = x, since (g7'g) ez = cez = x by
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definition of a group action, we have that g~' e (gex) = z, thus proving that
g~ ! e x =z as desired, with Stab(z) < G.

Exercise 8: Prove that a G-set X is a disjoint union of orbits.

Proof: Let x be a G-set, and let o: G x X — X denote a group action. Let
z,y € X, so that Orbit(xz) and Orbit(y) are arbitrary orbits. Suppose that
Orbit(z) N Orbit(y) # @. Let

grer=greycX

denote an element in the nonempty intersection Orbit(z)NOrbit(y). We thus
have that

(95 ') ez =y.
Therefore,
Orbit(y) = {ge (g g1 e2) | g € G}.
Equivalently,
Orbit(y) = {g(g5 'g1) ez | g € G}.

Since the mapping whereby g +— g(g; 'g1) is a permutation of G (see Exer-
cise 3), we thus have that

Orbit(y) ={hex | h € G},

thus proving that two orbits are either equal or disjoint. Since x € Orbit(x)
for z € X, we thus have that X may be written as a disjoint union of orbits.

Exercise 9: Show that the map
¢, : Orbit(z) — G/Stab(z)
given by the mapping
g e x — gStab(z) € G/Stab(x)
is a well-defined, bijective G-set homomorphism.

Proof: Suppose that g, @ z = g, ® . Equivalently, g, g, ® 2 = 2. Therefore,
g5 191 € Stab(z), so g; € gaStab(z), so g;Stab(z) = g,Stab(z) (see Exercise
4). We thus have the mapping ¢, is well-defined in the sense that g,ex = goex
implies that ¢, (g, ® ¥) = ¢.(g2 ® ).



Letting ¢1,92 € G so that g, e x and g, e x are arbitrary elements in the
domain of ¢,, we have that

Oz(g1 @) = Pp(go @ ) = g1Stab(x) = goStab(x).

We thus have that there exist elements gs, g4 € Stab(z) such that

g193 = 9294-
We thus have that
(9193) o = (9294) e,

which implies that
giexr =gae1%,

thus proving the injectivity of ¢,. It is obvious that ¢, is surjective, since
given a coset gStab(z) in the codomain of ¢,, we have that ¢,(g) = gStab(z).

Since
¢2((hg) ® x) = (hg)Stab(z) = h(gStab(z)) = h¢.(g ® x),

we have that ¢, is a G-set homomorphism.

Exercise 10: Prove that if # < G, then G/H is a group where o,y is
defined as g1 H oq/p g2 H = g1g2H.

Assume that H < G. We begin by showing that the operation og /g = o is
well-defined in the sense that the expression g H og g goH does not depend
on the coset representatives of the cosets g1 H and goH. So, suppose that
gnH = gsH and goH = g,H, letting ¢1,92,93,94 € G. To prove that the
operation o,y is well-defined, it thus remains to prove that:

9192 H = g3g9,H.

Since g1 H = g3H, let g3 = g1hy, where hy € H. Similarly, since goH = g4H,
let g4 = goho, with he € H. So, it remains to prove that

9192H = g1h1gahoH.

But since H < GG, we have that gH = Hg for all g € G. Since h1gs € Hgs =
goH, let higs = gohs, where hg € H. We thus have that

gihigaho H = g1g2hsho H.

6



But it is clear that
G192hshe H = g1goH
since the mapping h — hghoh is a bijection on H. We thus have that

9394H = 919 H
as desired, thus proving that og, g is well-defined.

Since og/y maps elements in (G/H) x (G/H) to G/H, we have that G/H
is a binary operation on Gi/H. So we have thus far shown that og/py is a
well-defined binary operation on G/ H.

The binary operation oy = o inherits the associativity of the underlying
binary operation of G in a natural way:

g1H o (g2H 0 g3H) = g1 H o ((g293)H)
= 91(9293) H
= (9192)93H
= (9192)H o g3H
= (g1H 0 g H) 0 g3H.

We have thus far shown that og, g is a well-defined associative binary oper-
ation on G/H.

Letting g € G be arbitrary, and letting e = eg denote the identity element
in GG, we have that:

(eH)(gH) = (eg)H
—eH

(ge)H

= (gH)(eH).

Again letting g € G be arbitrary, we have that:
(gH)(g~ H) = (

eH

(

(

g H
9 H
H)(gH).

g .
gfl
g—l



We thus have that if H < G, then G/H forms a group under the operation
oq/m given above.

Exercise 11: Show that the mapping ¢: G — G/H is a group homomor-
phism, where g — gH and ker(¢) = H.

Since ker(¢) < G as shown above, from our results given in the previous
exercise, we have that G/H is a group with respect to the binary operation

OG/H'

Now let g1, g2 € G. We thus have that

¢(9192) = (9192) H = (91H) oc/m (92H) = ¢(91) °oc/m $(92)

by definition of the well-defined group operation og,p.



