MIDTERM : MATH 6161

MAY 28, 2014

I want to work through some examples of the theorems that we have been talking about for the last weeks. I expect this exam will take a while and I will reserve 1/2 hour for each question. If the problem takes more than a half hour you will be responsible to finish it at home.

Here are the rules of the game:

- (1) You will be assigned some of the questions below by draw of a number.
- (2) You will be asked to write the answer on the blackboard for the problem that you draw.
- (3) In addition, you will be able to ask for help (especially from your random partner).
- (4) Write as clearly and legibly as you can and try to be consistent with notation from problem to problem.
- (5) I will record the answer and make it available for next time.
- (6) I will have my computer with me to do calculations and you may ask me to do heavy calculations that may speed up the process.
- (1) Let ψ and ϕ be two irreducible characters of G representations.
 - (a) Prove that if $\psi(e) = 1$, then $\tau(g) := \psi(g)\phi(g)$ is an irreducible character.
 - (b) For $G = S_4$ show that $\chi^{(1)}(g) = 1$ and $\chi^{(2)}(id) = \chi^{(2)}((123)) = \chi^{(2)}((12)(34)) = 1$ and $\chi^{(2)}((12)) = \chi^{(2)}((1234)) = -1$ determine two 1 dimensional characters.
 - (c) Show that if $\sigma(x_i) = x_{\sigma(i)}$ for $1 \le i \le 4$, then the vector space $\mathcal{L}\{x_1 x_2, x_2 x_3, x_3 x_4\}$ is an irreducible 3-dimensional module and give its character (call it $\chi^{(3)}$).
 - (d) Use part (a) to show that $\chi^{(4)}(\sigma) := \chi^{(2)}(\sigma)\chi^{(3)}(\sigma)$ is a third irreducible character.
 - (e) Use the orthogonality relations to determine the last irreducible character and give the complete character table.
- (2) The previous problem defines the character table of S_4 . The subgroup A_4 of S_4 consists of the 'even' permutations. Let $C_1 = \{(1)\}, C_2 = \{(12)(34), (13)(24), (14)(23)\}, (14)(23)\}$ $C_3 = \{(134), (142), (123), (243)\}, \text{ and } C_4 = \{(143), (132), (124), (234)\}.$ The group A_4 decomposes into conjugacy classes

$$A_4 = C_1 \cup C_2 \cup C_3 \cup C_4 .$$

- (a) Show that $\chi^{(1)}\downarrow_{A_4}^{S_4} = \chi^{(2)}\downarrow_{A_4}^{S_4}$ and $\chi^{(3)}\downarrow_{A_4}^{S_4} = \chi^{(4)}\downarrow_{A_4}^{S_4}$, that is, they agree as functions for all elements of A_4^{A} . (b) Show that $\chi^{(1)} \downarrow_{A_4}^{S_4}$ and $\chi^{(3)} \downarrow_{A_4}^{S_4}$ are irreducible in A_4 .
- (c) Show that $\chi^{(5)} \downarrow_{A_4}^{S_4}$ is not irreducible.
- (d) Find two A_4 characters χ and χ' which are irreducible such that $\chi^{(5)}\downarrow_{A_4}^{S_4} = \chi + \chi'$. Give the character table of A_4 .

MAY 28, 2014

- (3) The group A_4 contains four subgroups of order 3: $G_1 = \{(1), (123), (132)\}, G_2 = \{(1), (124), (142)\}, G_3 = \{(1), (134), (143)\}, G_4 = \{(1), (134), (243)\}.$
 - (a) Consider the submodule formally spanned by $\{G_1, G_2, G_3, G_4\}$ with the action $\sigma \cdot G_i = \{\sigma g \sigma^{-1} : g \in G_i\}$ for $\sigma \in A_4$. Give the decomposition of the module into irreducible submodules.
 - (b) Now consider the submodule formally spanned by the left cosets of G_1 , $\{\sigma G_1 : \sigma \in A_4\}$. Assume the action $\tau * \sigma G_1 = (\tau \sigma)G_1$ for $\tau \in A_4$. This is also a 4 dimensional module. Give the decomposition of the module into irreducible submodules.
- (4) Let D_n be the dihedral group containing 2n elements be generated by the group elements x, y satisfying the relations $x^n = y^2 = e$ and $yx = x^{-1}y$. The elements of this group are

$$\{e, x, x^2, \cdots, x^{n-1}, y, yx, yx^2, \dots, yx^{n-1}\}$$

(a) Show that for n odd the conjugacy classes are given by the subsets

$$\{e\} \cup \{y, yx, yx^2, \cdots, yx^{n-1}\} \cup \bigcup_{i=1}^{(n-1)/2} \{x^i, x^{-i}\}$$

- (b) Show that there are only two 1-dimensional representations of D_n for n odd by assuming that they are group homomorphisms and that χ satisfies the character relations and then determine the possible values of $\chi(x)$ and $\chi(y)$ for each irreducible χ .
- (c) Determine the number and dimensions of the irreducible characters of which are not 1-dimensional.
- (d) Find the character table for D_5 .
- (5) Let D_n act on $\mathcal{L}\{a_1, a_2\}$ by $x(a_1) = \zeta a_1$ where $\zeta = e^{2\pi i/n}$ and $y(a_1) = a_2$.
 - (a) Determine $x(a_2)$ and $y(a_2)$ that makes this action a D_n module.
 - (b) Let $V = \mathcal{L}\{a_1, a_2\}$ the D_5 module. Determine the character of V.
 - (c) Determine how V decomposes into irreducible submodules.
 - (d) Let $V^2 = \mathcal{L}\{a_1^2, a_2^2, a_1a_2\}$ be the D_5 submodule of polynomials of degree 2 in the basis elements of V. Determine the action of D_5 on the basis and tell how it decomposes into irreducible submodules.
 - (e) Let $V^{\otimes 2} = \mathcal{L}\{a_1 \otimes a_1, a_1 \otimes a_2, a_2 \otimes a_1, a_2 \otimes a_2\}$ be the D_5 submodule of spanned by the tensors of degree 2 in the basis elements of V. Determine the action of D_5 on the basis and tell how it decomposes into irreducible submodules.