
PROBLEMS FOR THE FINAL FOR MATH 6161

MIKE ZABROCKI

For the final exam I want you to write programs which compute the character of a certain
module in Sage. This requires several steps, none of which are complicated mathematically,
but will require some effort to overcome the challenges of learning a computer language.

The modules that I would like you to tackle are subrings of either the polynomials
Q[x1, x2, · · · , xn] or non-commutative polynomials Q 〈x1, x2, · · · , xn〉.

1. Some submodules of the polynomial ring

The symmetric group Sn acts on monomials for σ ∈ Sn,

(1) σ(xa11 x
a2
2 · · ·x

an
n ) = xa1σ(1)x

a2
σ(2) · · ·x

an
σ(n)

For a list of integers (a1, a2, · · · , ar), define

(2) ∆(a1,a2,··· ,ar) =
∏

1≤i<j≤r
(xai − xaj )

In particular, if r = 1, then ∆(a) = 1 and if ai = aj for some i 6= j ∆(a1,a2,··· ,ar) = 0. Now
for a filling of a diagram of a partition λ, with the entries given by Tij for 1 ≤ i ≤ `(λ) and
1 ≤ j ≤ λi, set

(3) ∆T =

`(λ)∏
i=1

∆(T1i,T2i,...,Tλ′
i
,i)

Example 1. If T is the standard tableau

(4)
3 5
1 2 4

then

∆T = (x1 − x3)(x2 − x5)

It is interesting to note that

Theorem 2.

(5) Mλ = L{∆T : T standard of shape λ}

is an irreducible module which is isomorphic to Young’s representation indexed by the same
partition.
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The modules that I want you to work on for your final project are based on these
basis elements, but are not clear how they decompose into irreducibles. The best way of
understanding how these modules decompose on general is to compute examples. I want
to to write programs that allow you to collect data and make conjectures.

For a tableau T , let mi(T ) be the number of labels of i in T . Define the content of
a tableau to be the vector content(T ) = sort(m1(T ),m2(T ), . . . ,m`(T )) where the sort
indicates that the entries of the tuple are sorted in weakly decreasing order (a partition).

Problem 1. Let λ and µ be partitions of n. Let

(6) M
(1)
λ,µ = L{∆T : T is column strict of shape λ and content(T ) = µ} .

Let ` = `(µ), then M
(1)
λ,µ is an S` module.

Example 3. Let λ = (3, 2) and µ = (2, 2, 1). There are 6 tableaux of shape (3, 2) and
content (2, 2, 1).

(7)
2 3
1 1 2 ,

2 2
1 1 3 ,

3 3
1 2 2 ,

2 3
1 2 3 ,

2 3
1 1 3 ,

3 3
1 1 2

Therefore M
(1)
λ,µ is spanned by the polynomials

{(x1 − x2)(x1 − x3), (x1 − x2)2, (x1 − x3)(x2 − x3),
(x1 − x2)(x2 − x3), (x1 − x2)(x1 − x3), (x1 − x3)3}

Notice that this list of 6 polynomials is not a basis since two of them are repeated.

Problem 2. Let λ(1) and λ(2) be partitions of n. Define

(8) M
(2)

λ(1),λ(2)
= L{∆T1∆T2 : T1 and T2 are standard of shape λ(1), λ(2) respectively} .

Let M
(2)

λ(1),λ(2)
is an Sn module.

Example 4. If λ = (3), then there is only one standard tableau of that shape and ∆T = 1,

and if λ = (2, 1) there are two standard tableaux
3
1 2 and

2
1 3 therefore

(9) M
(2)
(21),(3) = L{(x1 − x2), (x1 − x3)}

Problem 3. Let n > 1 and define

(10) M (3)
n = L{∂a1x1∂

a2
x2 · · · ∂

an
xn∆n : ai ≥ 0}

where ∆n =
∏

1≤i<j≤n(xi − xj).
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An interesting generalization to this problem is where for a partition λ of n, replace ∆n

with ∆T for all T standard of shape λ.

Example 5. Note ∆2 = (x1 − x2) so ∂x1∆2 = 1 and ∂x2∆2 = −1 so

(11) M
(3)
2 = L{x1 − x2, 1}

In every one of these problems you will need to complete the following steps.

• Find a spanning set for the module
• Find a basis for the module
• For any permutation, act on the basis and re-expand in terms of the basis elements
• to compute the character, sum over the coefficient of bi in σ(bi) running over all

basis elements bi
• to compute the Frobenius image, compute

(12)
1

n!

∑
σ∈Sn

character(σ)pcycle(σ)

I think that the only steps you don’t know how to do at this point involve Sage, namely
how to find a basis for a module from a spanning set (linear algebra), and then how to
compute with symmetric functions. In the meantime I will develop example programs of
my own to show you how these steps can be overcome.

Everybody in the class will have a different module to work on. You see that they are
similar in the types of programs you will have to write. I will give you two other modules
which are submodules of the non-commutative polynomials on July 7.

The other type sof modules that I would like you to consider are those that are spanned
by words (or non-commutative polynomials) rather than monomials in a commutative
polynomial ring.

Note that there are two types of actions on words.
Let w = w1w2 · · ·wk where wi ∈ {1, 2, . . . , n}. The left action (or the action on values)

is defined as

(13) σ(w) = σ(w1)σ(w2) · · ·σ(wk)

Let mr(w) = #{wi = r : 1 ≤ i ≤ `(w)} and

(14) Wn
µ = {w : `(w) = |µ|, 1 ≤ wi ≤ n, sort(m1(w),m2(w), . . . ,mn(w)) = µ}

where sort indicates that the non-zero entries should be rearranged in weakly decreasing
order. The set Wµ is the set of words w = w1w2 · · ·w|µ| of length |µ| whose vector of
numbers of values appearing in w is µ.
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Problem 4. Let µ be a partition of length at most n and let λ be a partition of n. Define

(15) M
(4)
λ,µ = {Eλi (w) : w ∈W |λ|µ , 1 ≤ i ≤ fλ}

where the symmetric group S|µ| acts on the left of these elements by permuting the values.

Example 6. An example is λ = (2, 1) and µ = (1). Then using Sage we calculate (using
the functions we wrote E tab(Tab([2,1],i))) that

E
(21)
1 = ()− (12)− (132) + (13), E

(21)
2 = () + (12)− (123)− (13)

and W
(3)
(1) = {1,2,3}.

E
(21)
1 (1) = 1− 2− 3 + 3

E
(21)
2 (1) = 1 + 2− 2− 3

E
(21)
1 (2) = 2− 1− 1 + 2

E
(21)
2 (2) = 2 + 1− 3− 2

E
(21)
1 (3) = 3− 3− 2 + 1

E
(21)
2 (3) = 3 + 3− 1− 1

Hence M
(4)
(2,1),(1) = L{1− 2,1− 3}

There is a second action on words. For σ ∈ Sn and and w = w1w2 · · ·wn, then

(16) (w)σ = wσ(1)wσ(2) · · ·wσ(n) .
In this case we say that σ acts on the positions of w.

Problem 5. Let µ and λ be partitions of n. Define

(17) M
(5)
λ,µ = {(w)Eλi : w ∈W (|µ|)

µ , 1 ≤ i ≤ fλ}
where the symmetric group S|µ| acts on the left of these elements by permuting the values.

Example 7. Lets start with a trivial example, µ = (3) and λ = (2, 1), then W 3
(3) =

{111,222,333}. But we have here that (w)E1 = (w)E2 = 0 for each w. Therefore

M
(5)
(21),(3) = {0}.

Example 8. Because E
(3)
1 = (), M

(5)
(3),(21) is equal to the linear span of the elements of

W 3
(21) = {112,121,211,113,131,311,223,232,322,221,212,122,331,313,133,332,323,233}.
To compute M

(5)
(21),(21) there are 36 calculations to complete since we again have

E
(21)
1 = ()− (12)− (132) + (13), E

(21)
2 = () + (12)− (123)− (13)

and there are 9 words in W 3
(21).

(112)E
(21)
1 = 112− 112− 211 + 211 = 0

(112)E
(21)
2 = 112 + 112− 121− 211
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(121)E
(21)
1 = 121− 211− 112 + 121

(121)E
(21)
2 = 121 + 211− 211− 121 = 0

(211)E
(21)
1 = 211− 121− 121 + 112

(211)E
(21)
2 = 211 + 121− 112− 112

This calculation is repeated then 6 times (5 more times) with σ((w)E
(21)
i ) = (σ(w))E

(21)
i

for each σ ∈ S3. These 6 elements span a space of dimension two spanned by {112 −
121,112− 211} and so the total dimension of M

(5)
(21),(21) is 12.


