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Hilbert Series of Invariants, Constant terms
and

Kostka-Foulkes Polynomials
by

A. Garsia, N. Wallach, G. Xin & M. Zabrocki

Abstract. A problem that arose in the study of the mass of the neutrino led us to the evaluation

of a constant term with a variety of ramifications into several areas from Invariant Theory, Repre-

sentation Theory, the Theory of Symmetric Functions and Combinatorics. A significant by-product

of our evaluation is the construction of a trigraded Cohen Macaulay basis for the Invariants under

an action of SLn(C) on a space of 2n + n2 variables.

Introduction
This paper covers a variety of topics encountered in the construction of a proof of the following

constant term identity

Theorem I.1
1

(1 − q)n

n∏
i=1

1
(1 − qxi)(1 − q/xi)

∏
1≤i<j≤n

1 − xj/xi

(1 − qxi/xj)(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
1 + q(

n+1
2 )

(1 − q)
∏n

i=2(1 − qi)2(1 − qn+1)
(
1 − q(

n+1
2 ))

. I.1

This problem arose in the determination of the ring of invariants under an action of SLn[C]. on the polynomial
ring Q[U, V, X] in the 2n + n2 variables

{ui, vj , xi,j}n
i,j=1 I.2

Here, a matrix g ∈ SLn[C] is made to act on the row vector U = (u1, u2, . . . , un) by right multiplication,
on the column vector V = (v1, v2, · · · , vn) by left multiplication and on the matrix X = ‖xi,j‖n

i,j=1 by
conjugation. More precisely, the action of g on a polynomial P (U, V, X) ∈ Q[U, V, X] is defined by setting

TgP (U, V, X) = P (Ug, g−1V, g−1Xg). I.3

It follows from well known results of Invariant Theory that the ring of invariants Q[U, V, X]SLn[C] is Cohen
Macaulay. This means that we must be able to find a basic set of invariants {θ1, . . . , θM ; η1, . . . , ηN}
such that every invariant can be uniquely expanded as a linear combination of η1, . . . , ηN with coefficients
polynomials in θ1, . . . , θM . We shall here and after refer to the task of constructing such a basic set as the
“UVX Problem ” and the polynomials P (U, V, X) ∈ C[U, V, X]SLn[C] will be called “UVX invariants ”.

A useful tool in identifying a basic set in a Cohen Macaulay ring is the Hilbert series of the ring.
That is the generating function of the dimension of the successive homogeneous components of the ring. In
this case, denoting by Hm(U, V, X) the subspace of homogeneous elements of degree m in C[U, V, X]SLn[C].
the Hilbert series is simply the rational function FUV X(q) with Taylor expansion

FUV X(q) =
∑
m≥0

dim Hm(U, V, X) qm.

The constant term in I.1 arises precisely in the construction of this rational function. That is we will show
that
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Theorem I.2

FUV X(q) =
1

(1 − q)n

n∏
i=1

1
(1 − qxi)(1 − q/xi)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

In particular by combining Theorems I.1 and I.2 we obtain

Theorem I.3
The Hilbert series of the ring of invariants C[U, V X)SLn[C] is the rational function

FUV X(q) =
1 + q(

n+1
2 )

(1 − q)
∏n

i=2(1 − qi)2(1 − qn+1)
(
1 − q(

n+1
2 )) I.4

This somewhat surprising result strongly suggests the nature of a possible basic set. Indeed, a Cohen
Macaulay ring with homogeneous basic set {θ1, . . . , θM ; η1, . . . , ηN} will necessarily have as Hilbert series
the rational function ∑N

i=1 qdeg(ηi)∏M
j=1

(
1 − qdeg(θj)

)
Calling the θj “quasi-generators” and the ηi “separators”, I.4 suggests that our ring should have 2n quasi-
generators of degrees 1, 2, . . . , n; 2, n, . . . , n + 1, a quasi-generator of degree

(
n+1

2

)
and two separators, one a

constant and one of degree
(
n+1

2

)
. The first set of 2n potential quasi-generators is not difficult to construct,

Indeed, the invariance of a trace under conjugation yields that the following n polynomials are all UVX
invariant

Π1 = traceX , Π2 = traceX2 , Π3 = traceX3 , . . . , Πn = traceXn I.5

The same is easily shown to be true for the polynomials

θ1 = UV , θ2 = UXV , θ2 = UX2V , . . . , θn = UXn−1V, I.6

here all these expressions should be interpreted as matrix products.
The search for two further homogeneous invariants of degree

(
n+1

2

)
as suggested by I.4, after some

efforts, yielded the following surprising pair of polynomials

Φ(U, X) = det

∥∥∥∥∥∥∥∥∥∥

U
UX
UX2

...
UXn−1

∥∥∥∥∥∥∥∥∥∥
and Ψ(V, X) = det

∥∥∥V, XV, X2V, . . . , Xn−1V
∥∥∥

In fact note that for any g ∈ SLn(C) we have

TgΦ(U, X) = det

∥∥∥∥∥∥∥∥∥∥

Ug−1

UXg−1

UX2g−1

...
UXn−1g−1

∥∥∥∥∥∥∥∥∥∥
= det

∥∥∥∥∥∥∥∥∥∥

U
UX
UX2

...
UXn−1

∥∥∥∥∥∥∥∥∥∥
det g−1 = Φ(U, X)
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and

TgΨ(V, X) = det
∥∥∥gV, gXV, gX2V, . . . , gXn−1V

∥∥∥ = det g det
∥∥∥V, XV, X2V, . . . , Xn−1V

∥∥∥ = Ψ(V, X)

Before we show how to construct a basic set from these UVX invariants, it will be good to give
an overview of the developments that yielded the evaluation of the constant term in I.1. The most natural
approach to proving I.1 is to start with a representation theoretical interpretation of the kernel involved in the
constant term. In fact as we shall see this kernel(†) is none other than a graded character of SLn[C]. Following
this approach required the decomposition of this character into its irreducible constituents, i.e. computing
the Schur expansion of this kernel. This is precisely where the so-called Kostka-Foulkes polynomials make
their appearance. This done, the completion of the proof may be carried out by a fascinating combination of
tools from Representation Theory, the Theory of Symmetric function and Combinatorics. Although all this
is natural and possibly quite revealing, we were compelled to find a shorter path. The first path we pursued
is to condense the essential ideas of this approach into a succession of symmetric function identities. We
give this proof in full detail in section 2. Nevertheless, so that the flavour of the first proof is not entirely
lost we give some of the highlights of the representation theoretical proof in section 3. There is however
another equally natural path that can be pursued, that is to use the algorithmic machinery of constant term
evaluations. In fact, if we simply process the kernel in the left hand side of I.1 by the MAPLE software of
G. Xin (††), out pops the right hand side of I.1 in a matter of seconds for n = 2, 3, 4 and these instances are
sufficient for a formulation of the general result. The problem then arises whether the identity in I.1, in full
generality, can be obtained manually by means of the partial fraction algorithm of G. Xin. Following this
path yielded unexpected surprises: To begin it showed the power of the partial fraction algorithm, yielding
the constant term in a few lines and avoiding almost all the sophisticated machinery of the previous proofs.
Next but not least it yielded a tri-graded version of the constant term and consequently also a tri-graded
Hilbert series. This development is presented in section 4. Its by-products can be stated as follows.

Theorem I.4
For u, v, q variables and n ≥ 2 we have

1
(1 − q)n

n∏
i=1

1
(1 − uxi)(1 − v/xi)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
1∏n

i=1(1 − qi)
∏n

i=1(1 − uvqi−1)

(
vnq(

n
2)

1 − vnq(
n
2)

+
1

1 − unq(
n
2)

)
.

I.7

A post hoc examination of this identity immediately suggested a natural tri-grading of the UVX
invariants. More precisely let us denote by Hr,s,m(UV X) the subspace of UVX invariants that are tri-
homogeneous of degree r in u1, u2, . . . , un, of degree s in v1, v2, . . . , vn and degree m in the x′

i,js and set

FUV X(u, v, q) =
∑
r≥0

∑
s≥0

∑
m≥0

urvsqm dim Hr,s,m(UV X)

(†) Except for the factor
∏

1≤i<j≤n

(1 − xj/xi)

(††) (downloadable from www.combinatorics.net.cn/homepage/xin/
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Then as a Corollary of Theorem I.4 we derive

Theorem I.5

FUV X(u, v, q) =
1∏n

i=1(1 − qi)
∏n

i=1(1 − uvqi−1)

(
vnq(

n
2)

1 − vnq(
n
2)

+
1

1 − unq(
n
2)

)
. I.8

These two results turn out to be precisely the refinements of Theorems I.2 and I.3 needed for a
surprisingly simple approach to the construction of bases for our UVX invariants. For example, we derive
from I.8

Theorem I.6
The UVX invariants have the tri-graded basis

Bab =
{

ΦmΠr1
1 Πr2

2 · · ·Πrn
n θs1

1 θs2
2 · · · θsn

n ; Ψm+1Πr1
1 Πr2

2 · · ·Πrn
n θs1

1 θs2
2 · · · θsn

n : m ≥ 0, si ≥ 0, ri ≥ 0
}

I.9

and this in turn yields
Theorem I.7

Setting

Γ+(U ;V ;X) = Φ(U ;X) + Ψ(V ;X) and Γ−(U ;V ;X) = Φ(U ;X) − Ψ(V ;X) I.10

both collections

B+ =
{

(Γ+)a(Γ−)bΠr1
1 Πr2

2 · · ·Πrn
n θs1

1 θs2
2 · · · θsn

n : a = 0, 1 ; b ≥ 0 ; ri, sj ≥ 0
}

I.11

and

B− =
{

(Γ−)a(Γ+)bΠr1
1 Πr2

2 · · ·Πrn
n θs1

1 θs2
2 · · · θsn

n : a = 0, 1 ; b ≥ 0 ; ri, sj ≥ 0
}

I.12

are vector space bases for the UVX invariants

Remarkably, as we shall see, this path can be reversed and derive the identity in I.8 from the following
result that may be proved directly from the singly graded Hilbert series in I.4

Theorem I.8
The UVX invariants have the tri-graded basis

Buv =
{

θm
n Πr1

1 Πr2
2 · · ·Πrn

n θs1
1 θs2

2 · · · θsn−1
n−1 Φu Ψv : si ≥ 0, ri ≥ 0; u ≥ 0, v ≥ 0; 0 ≤ m ≤ n − 1

}
I.9

These three results are shown in section 5. The paper starts in the next section with a proof of Theorem I.2.
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1. Molien’s Theorem and constant terms
The relation between Hilbert series and constant terms brought to the fore in the examples studied

in [4] is not an isolated accident. In fact, the path

Hilbert series −→ Moliens Theorem −→ Integral−→Constant Term

can be followed verbatim in a variety of cases leading to constant term problems gravid with algebraic and
combinatorial ramifications. Another example in point is given by the present UVX problem.

But before we proceed with our specific case we need to review the underlying general set up. To
this end note that the action of an m × m matrix A = ‖aij‖m

i,i=1 on a polynomial P (x) = P (x1, x2, . . . , xn)
is denoted TAP (x) and is defined by setting

TAP (x1, x2, . . . , xn) = P
( m∑

i=1

xiai1 ,

m∑
i=1

xiai2 , . . . ,

m∑
i=1

xiaim

)
1.1

In matrix notation, (viewing x = (x1, x2, . . . , xn) as a row vector), we may simply rewrite this as

TAP (x) = P
(
xA

)
. 1.2

Recall that if G is a group of m×m matrices we say that P ∈ C[x1, x2, . . . , xn] is “G-invariant” if and only if

TAP (x) = P (x) ∀ A ∈ G 1.3

The subspace of C[x] = C[x1, x2, . . . , xn] of G-invariant polynomials is usually denoted C[x]G. Clearly, the
action in 1.1 preserves homogeneity and degree, thus we have the direct sum decomposition

C[x]G = Ho

(
C[x]G

)
⊕H1

(
C[x]G

)
⊕H2

(
C[x]G

)
⊕ · · · ⊕ Hd

(
C[x]G

)
⊕ · · · 1.4

where Hd

(
C[x]G

)
denotes the subspace of G-invariants that are homogeneous of degree d. The “Hilbert

series” of C[x]G is simply given by formal power series

FG(q) =
∑
d≥0

qd dim
(
Hd

(
C[x]G

))
1.5

Since dimHd

(
C[x]G

)
≤ dim

(
Hd

(
C[x]

))
=

(
d+m−1

m−1

)
we see that this is a well defined formal power series.

In the case that G is a finite group the Hilbert series FG(q) is immediately obtained from Molien’s
formula

FG(q) =
1
|G|

∑
A∈G

1
det

(
I − qA

) . 1.6

For an infinite group G which posesses a unit invariant measure ω this identity becomes

FG(q) =
∫

A∈G

1
det

(
I − qA

) dω. 1.7

To convert such an integral into a constant term in [4] we used the following easily stablished identity.
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Proposition 1.1
If Q(a1, a2, . . . , ak) is a polynomial in Q[a1, a2, . . . , ak; 1/a1.1/a2, . . . , 1/ak] then

(
1
2π

)k ∫ π

−π

∫ π

−π

· · ·
∫ π

−π

Q[(eiθ1 , eiθ2 , . . . , eiθk
]
dθ1dθ2 · · · dθk = Q(a1, a2, . . . , ak)

∣∣∣
a0
1

∣∣∣
a0
2

· · ·
∣∣∣
a0

k

1.8

where the symbol ”
∣∣∣
a0

” denotes the operator of taking the constant term in a Laurent polynomial in a1, a2, . . . , ak

Armed with this machinery we can now proceed with

A proof of Theorem I.2
Passing from SLn[C] to SU [n] and using Moliens Theorem, we derive that

FUV X(q) =
∫

Tn

1
det |1 − qD(g)| dω(g) 1.9

with D(g) giving the action of Tg on the on the alphabet {ui, vj , xi,j}n
i,j=1 and dω(g) giving the corresponding

normalized Haar measure. Moreover, since the integrand is invariant under conjugation, the integral needs
to be carried out only over the thorus Tn of diagonal matrices

g =




a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 · · · 0

0 0 0
. . . 0

0 0 0 · · · an


 1.10

with
a1 = eiθ1 , a2 = eiθ2 , . . . , an = eiθn ,

and
a1a2 · · · an = 1, 1.11

Now for g as in 1.10, from I.3 we derive that

Tg{ui, vj , xi,j}n
i,j=1 = {uiai, a

−1
j vj , a

−1
i xi,jaj}n

i,j=1.

That is Tg acts on the alphabet {ui, vj , xi,j}n
i,j=1 the by the diagonal matrix D(g) with eigenvalues

a1, . . . , an; a−1
1 , . . . , a−1

n ;
{
aia

−1
j : 1 ≤ i, j ≤ n

}
this gives

det |1 − qD(g)| =
n∏

r=1

(1 − qar)(1 − q/ar)
n∏

r,s=1

(1 − qar/as) 1.12

and 1.9 reduces to

FUV X(q) =
∫

Tn

n∏
r=1

1
(1 − qar)(1 − q/ar)

n∏
r,s=1

1
(1 − qar/as)

dω(g) 1.13
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where the Haar measure here is
dωg =

∣∣∆(g)
∣∣2 dθ1dθ2 · · · dθn−1

n!(2π)n−1
. 1.14

with ∆(g) =
∏

1≤r<s≤n(ar − as) the Vandermonde determinant in the variables ar = eiθr . Note next that
Vandermonde determinant expansion gives

∣∣∆(g)
∣∣2 = ∆(g)∆(g−1)

= ∆(g)
∑

σ∈Sn

sgn(σ)
n−1∏
j=1

a−(n−j)
σj

=
∑

σ∈Sn

σ
(
∆(g)

n−1∏
j=1

a
−(n−j)
j

)
=

∑
σ∈Sn

σ

( ∏
1≤r<s≤n

(
1 − as/ar

))

Using this in 1.14, 1.13 becomes

FUV X(q) =
∑

σ∈Sn

∫
Tn

n∏
r=1

1
(1 − qar)(1 − q/ar)

n∏
r,s=1

1
(1 − qar/as)

σ

( ∏
1≤r<s≤n

(
1 − as/ar

))dθ1dθ2 · · · dθn−1

n!(2π)n−1
.

However, we see that the symetry of the expression to the left of σ allows us to move σ all the way to the
left of the integrand and reduce this integral to

FUV X(q) =
∑

σ∈Sn

∫
Tn

σ

( n∏
r=1

1
(1 − qar)(1 − q/ar)

n∏
r,s=1

1
(1 − qar/as)

∏
1≤r<s≤n

(
1 − as/ar

))dθ1dθ2 · · · dθn−1

n!(2π)n−1
.

But with the substitution an = (a1a2 · · · an−1)−1 the integrand is still symmetric in a1, a2, . . . , an−1, and the
action of σ cannot affect the value of the integral. Thus

FUV X(q) =
∫

Tn

n∏
r=1

1
(1 − qar)(1 − q/ar)

n∏
r,s=1

1
(1 − qar/as)

∏
1≤r<s≤n

(
1 − as/ar

)dθ1dθ2 · · · dθn−1

(2π)n−1
.

and this can be further simplified to

FUV X(q) =
1

(1 − q)n

∫
Tn

n∏
r=1

1
(1 − qar)(1 − q/ar)

∏
1≤r<s≤n

(
1 − as/ar

)
(1 − qar/as)(1 − qas/ar)

dθ1dθ2 · · · dθn−1

(2π)n−1
.

The identity in I.1 is thus an immediate consequence of Proposition 1.1.

2. Computing the constant term by symmetric function methods

The object of this section is to evaluate the constant term

Q =
1

(1 − q)n

n∏
i=1

1
(1 − qxi)(1 − q/xi)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

. 2.1
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using the Theory of Symmetric Functions.
To begin note that we can write

F (x; q) =
n∏

i=1

1
(1 − qxi)(1 − q/xi)

=
∑
a≥0

∑
b≥0

qa+bha(x)hb(1/x)

where we have set hb(1/x) = h(1/x1, 1/x2, . . . , 1/xn). We can thus split this factor of 2.1 into three summands

F (x; q) = F0(x; q) + F1(x; q) + F2(x; q) 2.2

where
F0(x; q) =

∑
a≥0

q2aha(x)ha(1/x)

and
F1(x; q) =

∑
0≤a<b

qa+bha(x)hb(1/x) , F2(x; q) =
∑

0≤b<a

qa+bha(x)hb(1/x)

Using 2.2 in 2.1 we get the decomposition

Q = Q0 + Q1 + Q2.

with

Qi =
1

(1 − q)n
Fi(x; q)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

(for i = 0, 1, 2)

Note that
F1(x; q) =

∑
0≤b<a

qa+bhb(x)ha(1/x) = F2(1/x; q)

Thus

Q1 =
1

(1 − q)n
F2(1/x; q)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
1

(1 − q)n
F2(x; q)

∏
1≤i<j≤n

1 − xj/xi

(1 − qxj/xi)(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

= Q2

The last equality due to the fact that any permutation of the variables cannot affect this constant term. In
summary we have

Q = Q0 + 2Q2 2.3

Now it is easy to show that

hb(1/x) =
1

(x1x2 . . . xn)b
Sbn−1(x) ∼= Sbn−1(x) 2.4
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where here and after the symbol “∼=” represents congruence “modulo x1x2 . . . xn”. It follows from 2.4 that

ha(x)hb(1/x) ∼=
a∧b∑
d=0

S(b+a−d,bn−2,d)
∼=

a∧b∑
d=0

S(b−d+a−d,(b−d)n−2,0).

Using this gives

F0(x; q) =
∑
a≥0

q2a
a∑

d=0

S2(a−d),(a−d)n−2)(x)

=
∑
a≥0

q2a
a∑

d=0

S2d,dn−2(x) =
1

1 − q2

∑
d≥0

q2dS2d,dn−2(x).

2.5

Likewise

F2(x; q) =
∑

0≤b<a

qa+b
b∑

d=0

Sb−d+a−d,(b−d)n−2

=
∑
b≥0

∑
a>b

qa+b
b∑

d=0

S2d+a−b,dn−2

and making the substitution a = b + k we get

F2(x; q) =
∑
d≥0

∑
k≥1

qkS2d+k,dn−2

∑
b≥d

q2b

In summary

F2(x; q) =
1

1 − q2

∑
d≥0

∑
k≥1

q2d+kS2d+k,dn−2(x). 2.6

Our next step is to obtain a more suitable version of the factor

G(x; q) =
1

(1 − q)n

∏
1≤i<j≤n

1
(1 − qxi/xj)(1 − qxj/xi)

2.7

Our point of departure is the following classical identity

Proposition 2.1
For any n ≥ 2 we have

∑
σ∈Sn

sign(σ)σ
( ∏

1≤i<j≤n

(xi − qxj)
)

=
( n∏

i=1

1 − qi

1 − q

) ∏
1≤i<j≤n

(xi − xj) 2.8

Proof
Note that for n = 2 this identity reduces to

(x1 − qx2) − (x2 − qx1) = (1 + q)(x1 − x2)
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which is patently true. We can thus proceed by induction on n. Let us assume that 2.8 is true for n − 1.
Letting σ(s) denote the left Sn−1-coset representative of Sn that sends n to s and sends 1, 2, . . . , n − 1 onto
the remaining integers in increasing order, we can rewrite the left hand side of 2.8 in the form

LHS =
n∑

s=1

(−1)n−sσ(s)
n−1∏
i=1

(xi − qxn)
∑

σ∈Sn−1

sign(σ)σ
( ∏

1≤i<j≤n−1

(xi − qxj)
)

and the inductive hypothesis gives that

LHS =
n−1∏
i=1

1 − qi

1 − q

n∑
s=1

(−1)n−sσ(s)
n−1∏
i=1

(xi − qxn)
( ∏

1≤i<j≤n−1

(xi − xj)
)

2.9

Using the identity
n−1∏
i=1

(xi − qxn) =
n−1∑
r=0

(−qxn)n−i−1ei(x1, x2, . . . , xn−1)

2.9 becomes

LHS =
n−1∏
i=1

1 − qi

1 − q

n−1∑
r=0

qn−1−i
n∑

s=1

(−1)s−i−1σ(s)xn−i−1
n ei(x1, x2, . . . , xn−1)

∏
1≤i<j≤n−1

(xi − xj)

and 2.8 follows since we have

n∑
s=1

(−1)s−i−1σ(s)xn−i−1
n ei(x1, x2, . . . , xn−1)

∏
1≤i<j≤n−1

(xi − xj) =
∏

1≤i<j≤n

(xi − xj).

In fact the left hand side is none other than the expansion of the Vandermonde determinant with respect
the row xn−i−1

1 , xn−i−1
2 , . . . , xn−i−1

n .

The identity in 2.8 has the following immediate corollary.

Proposition 2.2
For any n ≥ 2 we have

G(x; q) =
1

(1 − q)n

∏
1≤i<j≤n

1
(1 − qxi/xj)(1 − qxj/xi)

=

=
1∏n

i=1(1 − qi)
1

∆(x)

∑
σ∈Sn

sign(σ)σ
n∏

i−1

xn−i
i

( ∏
1≤i<j≤n

1
1 − qxi/xj

) 2.10

where ∆(x) denotes the Vandermonde determinant in x1, x2, . . . , xn.

Proof
Note that 2.8 can be rewritten in the form

1∏n
i=1(1 − qi)

1
∆(x)

∑
σ∈Sn

sign(σ)σ
( n∏

i−1

xn−i
i

∏
1≤i<j≤n

(1 − qxj/xi)
)

=
1

(1 − q)n
.
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Next we divide both sides by the rational function
∏

i �=j(1− qxi/xj) and since this function is symmetric in
x1, x2, . . . , xn, we can place it to the right of σ in the summation side. This results in the identity

1∏n
i=1(1 − qi)

1
∆(x)

∑
σ∈Sn

sign(σ)σ
( n∏

i−1

xn−i
i

∏
1≤i<j≤n

1
1 − qxi/xj

)
=

1
(1 − q)n

∏
1≤i<j≤n

1
(1 − qxi/xj)(1 − qxj/xi)

and 2.10 then follows from 2.2.

Remark 2.1
In using 2.8 to prove 2.17 we have followed an argument of Wallach-Willenbring [9] who prove the

corresponding general result for all Weyl groups. The representational context which gives rise to these
computations will be discussed in the next section.

The identity in 2.10 has the following remarkable consequence

Proposition 2.3
For n ≥ 2 and for any symmetric rational funtion A(x) we have

1
(1 − q)n

A(x)
∏

1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=

1∏n
i=1(1 − qi)

A(x)
∏

1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

.

2.11

Proof
Using 2.10 the left hand side of 2.11 becomes

LHS =
A(x)∏n

i=1(1 − qi)

∏
1≤i<j≤n (1 − xi/xj)

∆(x)

( ∑
σ∈Sn

sign(σ)σ
n∏

i−1

xn−i
i

∏
1≤i<j≤n

1
1 − qxi/xj

)∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
A(x)∏n

i=1(1 − qi)
(−1)(

n
2)∏n

j=1 xj−1
j

( ∑
σ∈Sn

sign(σ)σ
n∏

i−1

xn−i
i

∏
1≤i<j≤n

1
1 − qxi/xj

)∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
A(x)∏n

i=1(1 − qi)
(−1)(

n
2)

n∏
j=1

xn−j
j

( ∑
σ∈Sn

sign(σ)σ
n∏

i−1

x1−i
i

∏
1≤i<j≤n

1
1 − qxi/xj

)∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

= (−1)(
n
2)

∑
σ∈Sn

sign(σ)σ
((

σ−1
n∏

j=1

xn−j
j

) A(x)∏n
i=1(1 − qi)

n∏
i−1

x1−i
i

∏
1≤i<j≤n

1
1 − qxi/xj

)∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

.

Since permuting the variables cannot affect this constant term we can remove the left most σ and obtain

LHS = (−1)(
n
2)

( ∑
σ∈Sn

sign(σ)σ−1
n∏

j=1

xn−j
j

)
A(x)∏n

i=1(1 − qi)

n∏
i−1

x1−i
i

∏
1≤i<j≤n

1
1 − qxi/xj

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

= (−1)(
n
2)

( ∏
1≤i<j≤n

(xi − xj

)
A(x)∏n

i=1(1 − qi)

n∏
i−1

x1−i
i

∏
1≤i<j≤n

1
1 − qxi/xj

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
n∏

j=1

xj−1
j

A(x)∏n
i=1(1 − qi)

n∏
i−1

x1−i
i

∏
1≤i<j≤n

1 − xi/xj

1 − qxi/xj

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
A(x)∏n

i=1(1 − qi)

∏
1≤i<j≤n

1 − xi/xj

1 − qxi/xj

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n
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This proves 2.11.

Using 2.11 with A(x) = F0(x; q) and A(x) = F2(x; q) as given by 2.5 and 2.6 we get

Q0 =
1

1 − q2

1∏n
i=1(1 − qi)

∑
d≥0

q2dS2d,dn−2(x)
∏

1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

2.12

and

Q2 =
1

1 − q2

1∏n
i=1(1 − qi)

∑
d≥0

∑
k≥1

q2d+kS2d+k,dn−2(x)
∏

1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

2.13

This brings us to the evaluation of constant terms of the form

Πλ(q) = Sλ(x)
∏

1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

2.14

with λ = (λ1, λ2, . . . , λn−1, 0). Now note that the symmetry of Sλ(x) and the invariance of our constant
term under permutation of the variables allows us to rewrite 2.14 as

Cλ(q) = Sλ(x)
∏

1≤i<j≤n

1 − xj/xi

(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
( ∑

σ∈Sn

sign(σ)xσ(λ+δ)−δ
) ∏

1≤i<j≤n

1
(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

2.15

with
δ = (n − 1, n − 2, . . . , 1, 0). 2.16

It will be convenient here and after to denote by P collection of vectors which may be written in the form

p =
∑

1≤i<j≤n

ai,j(ei − ej) 2.17

with ai,j ≥ 0 integers, and e1, e2, . . . , en the n-dimensional coordinate vectors. We may thus write

∏
1≤i<j≤n

1
1 − qxi/xj

=
∑
p∈P

q‖p‖ xp. 2.18

where for p as in 2.17 we set
‖p‖ =

∑
1≤i<j≤n

pij .

We should note that for any p = (p1, p2, . . . , pn) ∈ P we have

p1 + p2 + · · · + pn = 0 2.19
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Using 2.18 in 2.15 gives

Cλ(q) =
∑
p∈P

q‖p‖
∑

σ∈Sn

sign(σ)xσ(λ+δ)−δ−p

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

. 2.20

This brings us to the following basic result

Proposition 2.4
The constant term Cλ(q) vanishes unless the size of λ is divisible by n, and if λ1 + λ2 + · · · + λn = nb

then

Cλ(q) = Kλ,bn(q) 2.21

the latter being the Kostka Foulkes polynomial with the given partition indexing.

Proof
Observe first that a constant term such as

xa1
1 xa2

2 · · ·xan
n

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

fails to vanish if and only if a1 = a2 = · · · = an. Indeed we have

xa1
1 xa2

2 · · ·xan
n

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

= xa1−an
1 xa2−an

2 · · ·xan−1−an

n−1

∣∣∣∣
x0
1x0

2···x0
n

=

{ 1 if ai = an for 1 ≤ i ≤ n − 1

0 otherwise

In particular, in the first case we will have

a1 + a2 + . . . + an = (n − 1)an + an = nan.

In view of 2.19 we immediately derive from this that all the summands in 2.20 will identically vanish if
λ1 + λ2 + · · · + λn is not divisible by n. On the other hand when λ1 + λ2 + · · · + λn = nb we can write

Cλ(q) =
∑
p∈P

q‖p‖
∑

σ∈Sn

sign(σ)xσ(λ+δ)−δ−p

∣∣∣∣
xb
1xb

2···xb
n

= Sλ(x)
∏

1≤i<j≤n

1 − xj/xi

1 − qxj/xi

∣∣∣∣
xb
1xb

2···xb
n

and the latter is the well known formula for the Kostka-Foulkes polynomial Kλ,bn(q)

To complete the evaluation of our constant term we need one more auxiliary result

Proposition 2.5
For n ≥ 2, and d, k ≥ 0 we have

K(2d+kn,dn−2),(k+d)n(q) = qk(n
2)+d

[
d + n − 2

d

]
q

2.22

Proof
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We are to show that for λ = (2d + nk, dn−2, 0)

Sλ[Xn]
∏

1≤i<j≤n

1 − xj/xi

1 − qxj/xi

∣∣∣∣
xd+k
1 xd+k

2 ···xd+k
n

= qk(n
2)+d

[
d + n − 2

d

]
q

Note first that for n = 2, (setting d + k = b), this reduces to

S(2b,0)[x1 + x2]
1 − x2/x1

1 − qx2/x1

∣∣∣
xb
1xb

2

=
(xb

1x
−b
2 − x−b−1

1 xb+1
2 )

1 − qx2/x1

∣∣∣
xb
1xb

2

= qb.

which is clearly true. So we can proceed by induction on n ≥ 2 and assume 2.22 valid up to n − 1. This
given, canceling the denominator of the Schur function we get

Sλ[Xn]
∏

1≤i<j≤n

1 − xj/xi

1 − qxj/xi

∣∣∣∣
xd+k
1 xd+k

2 ···xd+k
n

=
∏

1≤i<j≤n

1
1 − qxj/xi

∑
σ∈Sn

sgn(σ)
xσ(λ+δ)−δ∏n

i=1 xd+k
i

∣∣∣∣
x0
1x0

2···x0
n

=
∑

σ∈Sn

sgn(σ)
x

λσ1−σ1+1−d−k
1∏n

j=2(1 − qxj/x1)

∣∣∣∣
x0
1

∏n
i=2 x

λσ(i)+δσ(i)−δi−(d+k)

i∏
2≤i<j≤n 1 − qxj/xi

∣∣∣∣
x0
2···x0

n

. 2.23

Now note that

x
λσ1−σ1+1−d−k
1∏n

j=2(1 − qxj/x1)
=




x
−σ1+1−k

1∏n

j=2
(1−qxj/x1)

if 2 ≤ σ1 ≤ n − 1

x−n+1−d−k
1∏n

j=2
(1−qxj/x1)

if σ1 = n

and we see that in either case this expression contains only negative powers of x1. Thus only the terms with
σ1 = 1 contribute to the constant term in 2.23. Since for σ1 = 1 we have

x
λσ1−σ1+1−d−k
1∏n

j=2(1 − qxj/x1)

∣∣∣∣
x0
1

=
x2d+nk−d−k

1∏n
j=2(1 − qxj/x1)

∣∣∣∣
x0
1

= qd+(n−1)khd+(n−1)k(x2. . . . , xn)

The constant term in 2.23 reduces to

qd+(n−1)khd+(n−1)k(x2, . . . , xn)
∑

σ∈S(2,...,n)

sgn(σ)
∏n

i=2 x
λσ(i)+δσ(i)−δi−(d+k)

i∏
1<i<j≤n 1 − qxj/xi

∣∣∣∣
x0
2···x0

n

=

= qd+(n−1)khd+(n−1)k(x2, . . . , xn)Sdn−2(x2, . . . , xn)
∏

2≤i<j≤n

1 − xj/xi

1 − qxj/xi

∣∣∣∣
xd+k
2 ···xd+k

n

= qd+(n−1)k
d∑

a=0

S(d+a+(n−1)k,dn−3,d−a)(x2, . . . , xn)
∏

2≤i<j≤n

1 − xj/xi

1 − qxj/xi

∣∣∣∣
xd+k
2 ···xd+k

n

= qd+(n−1)k
d∑

a=0

S(2a+(n−1)k,an−3,0)(x2, . . . , xn)
∏

2≤i<j≤n

1 − xj/xi

1 − qxj/xi

∣∣∣∣
xa+k
2 ···xa+k

n

(by induction) = qd+(n−1)k
d∑

a=0

qk(n−1
2 )+a

[
a + n − 3

a

]
q

= qk(n
2)+d

d∑
a=0

qa

[
a + n − 3

a

]
q

,
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and 2.22 follows from the q-binomial identity
d∑

a=0

qa

[
a + n − 3

a

]
q

=
[
d + n − 2

d

]
q

.

We now have all the ingrediens need to establish our final result here which, combined with Theorem
1.2, yields us our first proof of Theorem I.3. That is

Theorem 2.1

Q =
1

(1 − q)
1 + q(

n+1
2 )∏n

i=2(1 − qi)2(1 − qn+1)
(
1 − q(

n+1
2 )) 2.24

Proof
Proposition 2.3 gives

Q0 =
1∏n

i=1(1 − qi)
F0(x; q)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

(using 2.5 ) =
1∏n

i=1(1 − qi)
1

1 − q2

∑
d≥0

q2dS2d,dn−2(x)
∏

1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

(using 2.21 ) =
1∏n

i=1(1 − qi)
1

1 − q2

∑
d≥0

q2dK(2d,dn−2),dn(q)

(using 2.22 ) =
1∏n

i=1(1 − qi)
1

1 − q2

∑
d≥0

q2dqd

[
d + n − 2

d

]
q

=
1

1 − q

1∏n
i=2(1 − qi)2

1
(1 − qn+1)

. 2.25

where the last equality follows from the q-series identity∑
d≥0

xd

[
d + m

d

]
q

=
1

(1 − x)(1 − xq) · · · (1 − xqm)
. 2.26

Using again Proposition 2.3 we get

Q2 =
1∏n

i=1(1 − qi)
F2(x; q)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

(using 2.6 ) =
1∏n

i=1(1 − qi)
1

1 − q2

∑
d≥0

∑
k≥1

q2d+kS2d+k,dn−2(x)
∏

1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

Now note that the size of the partition (2d + k, dn−2) is a multiple of n is if and only if k itself is a multiple
of n. Thus Proposition 4 reduces this constant term to

Q2 =
1∏n

i=1(1 − qi)
1

1 − q2

∑
d≥0

∑
k≥1

q2d+nkS2d+nk,dn−2(x)
∏

1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

(using 2.21 ) =
1∏n

i=1(1 − qi)
1

1 − q2

∑
d≥0

∑
k≥1

q2d+nkK(2d+nk,dn−2),(k+d)n(q)

(using 2.22 ) =
1∏n

i=1(1 − qi)
1

1 − q2

∑
d≥0

∑
k≥1

q2d+nkqk(n
2)+d

[
d + n − 2

d

]
q

(using 2.26 ) =
1

1 − q

1∏n
i=1(1 − qi)2

q(
n+1

2 )(
1 − q(

n+1
2 )) 1

(1 − qn+1)
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and from 2.3 we get

Q = Q0 + 2Q2 =
1

1 − q

1∏n
i=2(1 − qi)2

1
(1 − qn+1)

(
1 +

2q(
n+1

2 )

1 − q(
n+1

2 )

)
,

proving 2.24 and completing our calculation of the constant term.

3. Computing the constant term by Representation Theory.

We give an overview of the original proof of Theorem I.1. We will see that the proof we gave in
the previous section is the end product of a succession of efforts aimed at eliminating from the original
proof all the steps that required more specialized knowledge. Our goal there was to produce an argument
accessible to the general audience. Inevitably, some beautiful facts were lost in the process. To compensate,
in this section, we will make available to the interested reader some of the identities that are needed for a
representation theoretical proof of Theorem I.1.

We must point out that many of the tools need in this approach are well known to representation
theorists. For sake of completeness, we will review them here recast in a language that is more familiar to
the combinatorists.

Recall that the action of an n×n matrix M = ‖mi,j‖n
i,j=1 on a polynomial P (x) = P (x1, x2, . . . , xn)

is defined by setting
TMP (x) = P (xM)

The matrix expressing the action of TM on the homogeneous polynomials of degree m in term of the monomial
basis

〈
xp

〉
|p|=m

is denoted here by Sm(M) and its entries may be computed from the identities

TMxq =
∑

|p|=m

xpSm
p,q(M)

That is
Sm

p,q(M) = (xM)q
∣∣∣
xp

.

It follows from the Macmahon Master Theorem that the generating function of the traces of the matrices
Sm(M) is given by the formula

∑
m≥0

qmtrace Sm(M) =
1

det(1 − qM)
. 3.1

If G is a group of n× n matrices then the right hand side of 3.1, as a function of M ∈ G, may be viewed as
the “graded character” of G as it acts on the polynomial ring R = C[x1, x2, . . . , xn].

This simple observation yields

Proposition 3.1
The rational function

χn(x; q) = χn(x1, x2, . . . , xn, q) =
1

(1 − q)n

∏
i �=j

1
1 − qxi/xj

3.2
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is the graded character of SLn(C) under the action on polynomials P (X) ∈ C[xi,j : 1 ≤ i, j ≤ n] defined by

TgP (X) = P (g−1Xg) ( X = ‖xij‖n
i,j=1). 3.3

Proof
Note that if g is diagonal with eigenvalues x1, x2, . . . , xn then

g−1Xg = ‖x−1
i xijxj‖ij

thus in this case the character is given by 3.1 with M the diagonal matrix with eigenvalues

x−1
i xj for 1 ≤ i, j ≤ n.

But then

det(1 − qM) = (1 − q)n
∏

1≤i �=j≤n

(
1 − qxj/xi

)
.

Since det(1− qM) is invariant under conjugation, this proves 3.2 for a diagonalizable g . The validity of 3.2
for all g ∈ SLn(C) then follows by a standard continuity argument.

In the same manner it follows from 3.1

Proposition 3.2
The rational function

F (x; q) =
n∏

i=1

1
(1 − qxi)(1 − q/xi)

=
∑
a≥0

∑
b≥0

qa+bha(x)hb(1/x) 3.4

is the graded character of SLn(C) under the action on polynomials P (U, V ) ∈ C[ui, vj : 1 ≤ i, j ≤ n] defined by

TgP (U, V ) = P (Ug, g−1V ) (U = (u1, u2, . . . , un) V =




v1

v2
...

vn


). 3.5

Proof
It suffices to note that when g is diagonal with eigenvalues x1, x2, . . . , xn then

Tg

〈
u1, u2, . . . , un; v1, v2, . . . , vn

〉
=

〈
u1x1, u2x2, . . . , unxn;x−1

1 v1, x
−1
2 v2, . . . , x

−1
n vn

〉
Thus here M is a diagonal matrix with eigenvalues x1, x2, . . . , xn, x−1

1 , x−1
2 , . . . , x−1

n . and in this case 3.1
reduces to the right hand side of 3.4

By combinining these two results we obtain
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Theorem 3.1
The rational function

Un(x; q) =
1

(1 − q)n

n∏
i=1

1
(1 − qxi)(1 − q/xi)

∏
i �=j

1
1 − qxi/xj

3.6

is the graded character of SLn(C) under the action on polynomials P (U, V, X) ∈ C[ui, vj , xij : 1 ≤ i, j ≤ n]
defined by

TgP (U, V, X) = P (Ug, g−1V, g−1Xg) 3.7

In particular 3.6 yields a representation theoretical proof of the identity

FUV X(q) =
1

(1 − q)n

n∏
i=1

1
(1 − qxi)(1 − q/xi)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

. 3.8

Proof
We need only show that 3.6 implies 3.8. To this end note that since x1, x2, . . . , xn are the eigenvalues

of a matrix in SLn(C) we necesarily have

x1x2 . . . xn = 1 3.9

Thus all computations of a character of SLn(C) should be carried out, modulo this relation. This implies
that the irreducible characters of SLn(C) are Schur functions indexed by partitions of length n− 1 at most.
In fact, if λ has k columns of length n and µ is the partition obtained by removing these columns then

sλ(x) = (x1x2 . . . xn)ksµ(x) ∼= sµ(x),

here again the symbol “∼=” represents ”congruence ” modulo 3.9. Since we have

sµ(x)
∏

1≤i<j≤n

(1 − xi/xj)
∣∣∣∣
x0
1x0

2···x0
n

=
{ 1 if µ = φ

0 otherwise

we can see that the right hand side of 3.8 gives none other than the graded generating function of the multi-
plicities of the trivial representation of SLn(C) under the action in 3.7 on the polynomial ring C[ui, vj , xij :
1 ≤ i, j ≤ n]. But this is only another way of saying that the right hand side of 3.8 is the Hilbert series of
UVX invariants and our proof is thus complete.

These observations immediately yield a path for the computation of the constant term in 3.8 by
symmetric function methods. Indeed, this computation can be carried out in three steps

(1) Obtain the Schur function expansion of

F (x; q) =
n∏

i=1

1
(1 − qxi)(1 − q/xi)
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(2) Obtain the Schur function expansion of

χn(x; q) =
1

(1 − q)n

n∏
i �=j

1
(1 − qxi/xi)

(3) Multiply these two expansion by the Littlewood Richarson rule and then

a) set to 1 all the Schur functions indexed by rectangular partitions of height n

b) set to zero all the other Schur functions.

We have seen how to carry out step (1) in the computations that yielded Fo(x; q) and F2(x; q) (see
2.6). To carry out step (2) we can use a short cut yielded by a further representation theoretical argument.

To see this note that since traces are not affected by conjugation, it follows that n polynomials

Π1 = traceX , Π2 = traceX2 , . . . , Πn = traceXn

are invariant under our action. Now from a general result of B. Kostant [8] it follows that the ring of poly-
nomials in the xi,j is free over the ring of polynomials in Π1,Π2, . . . ,Πn. From this fact we can immediately
obtain the character of the action of SLn(C) on the quotient ring

C[xij : 1 ≤ i, j ≤ n]/(Π1,Π2, . . . ,Πn) 3.10

or equivalently on the space Hn of “ SLn-Harmonic” polynomials. That is the space polynomials in the
xij that are killed by the differential operators obtained from the Πi upon replacement of each xij by ∂xij

.
Denoting the graded character of this action by χHn(x; q),it follows from the theorem of Kostant that

χn(x; q) =
χHn(x; q)

(1 − q2) · · · (1 − qn)
, 3.11

This given. Proposition 2.2 can be restated as

Proposition 3.3
For any n ≥ 2

χHn(x; q) =
1

∆(x)

∑
σ∈Sn

sign(σ)σ
n∏

i−1

xn−i
i

( ∏
1≤i<j≤n

1
1 − qxi/xj

)
3.12

where ∆(x) denotes the Vandermonde determinant in x1, x2, . . . , xn.

Proof
In view of 3.2 the identity in 2.10 simply states that

χn(x; q) =
1∏n

i=1(1 − qi)
1

∆(x)

∑
σ∈Sn

sign(σ)σ
n∏

i−1

xn−i
i

( ∏
1≤i<j≤n

1
1 − qxi/xj

)

and 3.12 follows by combining this identity with 3.5.

This result has the following remarkable consequence of Kostant Theorem,
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Theorem 3.2 (first stated in this form by Ranee Gupta in [6], [7])

χHn(x; q) =
∑
b≥0

∑
λ�nb

λ(λ)<n

Sλ(x)Kλ,bn(q) 3.13

where Kλ,bn(q) is the so-called Kotska Foulkes polynomial.

Proof
The point of departure here is 3.6 which, using the notation introduced in 2.16, 2.17 and 2.18,

becomes

χHn(x; q) =
1

∆(x)

∑
σ∈Sn

sign(σ)σ
n∏

i−1

xn−i
i

( ∏
1≤i<j≤n

1
1 − qxi/xj

)

=
∑

p∈P+

q‖p‖ 1
∆(x)

∑
σ∈Sn

sign(σ)σxδ+p

3.14

Now note that for some λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) we have

1
∆(x)

∑
σ∈Sn

sign(σ)σxδ+p =

{
sign(σ)sλ(x) if σ(λ + δ) = p + δ for some σ ∈ Sn

0 otherwise

Thus 3.14 may be rewritten as

χHn(x; q) =
∑

p∈P+

q‖p‖
∑

λ

sλ(x)
∑

σ∈Sn

sign(σ)χ(σ(λ + δ) = δ + p)

=
∑

p∈P+

q‖p‖
∑

λ

sλ(x)
∑

σ∈Sn

sign(σ)zσ(λ+δ)−δ−p
∣∣∣
z0
1z0

2 ···z0
n

=
∑

p∈P+

q‖p‖
∑

λ

sλ(x)sλ(z) z−δ−p
∣∣∣
z0
1z0

2 ···z0
n

(Using 2.18) =
∑

λ

sλ(x)sλ(z) z−δ∆(z)
∏

1≤i<j≤n

1
1 − qzj/zi

∣∣∣
z0
1z0

2 ···z0
n

3.15

Now since p1+p2+· · ·+pn = 0 (see 2.10), it follows from the equality σ(λ+δ)−δ = p that λ1+λ2+· · ·+λn = 0.
Thus we must have −λn = b > 0 and, a fortiori, the vector λ∗ = (λ1 + b, λ2 + b, . . . , λn−1 + b, 0) must
be a partition of bn. To convert sλ(x) into an customary Schur function, we then note that from the
bideterminantal formula we get that

sλ∗(x) = sλ(x)(x1x2 · · ·xn)b ∼= sλ(x)

Using this identity 3.15 becomes

χHn(x; q) ∼=
∑
b≥0

∑
λ∗�bn

sλ∗(x)sλ∗(z)

∏
1≤i<≤n(zi − zj)

zb+n−1
1 zb+n−2

2 · · · zb+n−n
n

∏
1≤i<j≤n

1
1 − qzj/zi

∣∣∣
z0
1z0

2 ···z0
n

∼=
∑
b≥0

∑
λ∗

sλ∗(x)sλ∗(z)
∏

1≤i<j≤n

1 − zj/zi

1 − qzj/zi

∣∣∣
zb
1zb

2···zb
n
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This proves 3.13 since one of the classical formulas for the Kostka-Foulkes polynomial may be written in the
form

Kλ,µ(q) = Sλ(z1, z2, . . . , zn)
∏
i �=j

1 − zj/zi

1 − qzj/zi

∣∣∣∣
z

µ1
1 z

µ2
2 ···zµn

n

Having carried out step (1) and step (2) to carry out step (3), we need the following symmetric
function fact.
Proposition 3.4

Given two partitions λ = (λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ 0) and µ = (µ1 ≥ µ2 ≥ . . . ≥ µn−1 ≥ 0), the Schur

fuction expansion of the product

sλ(x)sµ(x) 3.16

contains a Schur function indexed by a rectangular partition of height n if and only if

µ = (b − λn, . . . , b − λ2, b − λ1, ), 3.17

where b = max(λ1, µ1) and |λ| + |µ| = nb. In particular this Schur function occurs with multiplicity 1.

Proof
The expansion of the product in 3.16 contains a Schur function sbn(x) if and only if

〈
sλ(x)sµ(x) , sbn(x)

〉
	= 0 (with nb = |λ| + |µ|)

now this is equivalent to 〈
sµ(x) , sbn/λ(x)

〉
	= 0. 3.18

But a Schur function indexed a skew diagram obtained by removing a Ferrers
diagram from a rectangle is identical to the Schur function indexed by the partition
λc obtained by a 180o rotation of the skew diagram, (see figure where we depicted
the case when b = λ1). This geometric fact yields 3.17 as well as the multiplicity
assertion.

Combining 3.11 with 3.13 and using the expansions in 2.4 and 2.6, it is not difficult to complete
step 3 by means of Proposition 3.4. We shall not carry this out here since the remaining steps involve
manipulations with symmetric functions that are quite similar to those we have seen in the previous section.
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4. Computing the constant term by the partial fraction algorithm

A comprehensive introduction to the general form of the partial fraction algorithm can be found in
[10]. A tutorial in the use of a restricted version this algorithm (sufficient for the present purposes) is given
in [5]. In this paper we will strictly adhere to the notation and terminology introduced in [5] except that we
will use the signs “≺” and “�” for all monomial inequalities derived from our alphabet total order.

Our point of departure here is Proposition 2.3. More precisely, using the identity in 2.11 with

A(x) =
n∏

i=1

1
(1 − qxi)(1 − q/xi)

gives

1
(1 − q)n

n∏
i=1

1
(1 − qxi)(1 − q/xi)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
1∏n

i=1(1 − qi)

n∏
i=1

1
(1 − qxi)(1 − q/xi)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

.

Thus to prove Theorem I.1, we need show that

n∏
i=1

1
(1 − qxi)(1 − q/xi)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
1 + q(

n+1
2 )

(1 − q(
n+1

2 ))
∏n+1

i=2 (1 − qi)

Since this constant term cannot change under any permutation of the variables, it will be equivalent to show

n∏
i=1

1
(1 − qxi)(1 − q/xi)

∏
1≤i<j≤n

1 − xj/xi

(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

=
1 + q(

n+1
2 )

(1 − q(
n+1

2 ))
∏n+1

i=2 (1 − qi)
. 4.1

The simplicity of the following purely manipulatorial derivation of 4.1 demonstrates the power of the partial
fraction algorithm in the computation of constant terms.

Let u, v and w be three additional variables, and set

Qn(u, v, w) =
n∏

i=1

1
(1 − uxi)(1 − v/xi)

∏
1≤i<j≤n

1 − xj/xi

(1 − qxj/xi)

∣∣∣
xn=w/x1···xn−1

.

Q∗
n(u, v, w) =

n∏
i=1

1
(1 − uxi)(1 − v/xi)

∏
1≤i<j≤n

1 − xj/xi

(1 − qxj/xi)

∣∣∣
x1=w−1/x2···xn

. 4.2

To do this, we choose the total order of the variables to be q≺u≺ v≺w≺x1 ≺x2 ≺ . . . ≺xn, and define

Rn(u, v, w) =
1

1 − w/x1 · · ·xn

n∏
i=1

1
(1 − uxi)(1 − v/xi)

∏
1≤i<j≤n

1 − xj/xi

(1 − qxj/xi)
,

R∗
n(u, v, w) =

1
1 − 1/wx1 · · ·xn

n∏
i=1

1
(1 − uxi)(1 − v/xi)

∏
1≤i<j≤n

1 − xj/xi

(1 − qxj/xi)
.
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Clearly we have Rn(u, v, w) = R∗
n(u, v, 1/w). In what follows, the argument w may be replaced by a

monomial m. We will always make the following choice: if m/x1 · · ·xn ≺ 1 or m≺ 1 for short, then we must
choose Rn(u, v, m), otherwise m/x1 · · ·xn � 1 or m� 1 for short, we must choose R∗

n(u, v, 1/m).
We will evaluate the constant terms of Rn(u, v, w) and R∗

n(u, v, w) in two ways to obtain the constant
terms of Qn(u, v, w) and Q∗

n(u, v, w). This given, it is easy to check that Rn(u, v, w) is proper in xi for all i

and vanishes when setting xi = 0, so the tools of the tutorial in [5] may be applied for every xi.

Lemma 4.1
We have

Rn(u, v, w)|x0
1···x0

n
=

1
1 − uv

Rn−1(qu, b, uw)|x0
1···x0

n−1
.

Proof
We use Proposition 4.2 of [5] for the variable x1. Among all factors containing x1, the factors of the

form 1 − qxj/x1 have a dual contribution; the factors 1 − w/x1 · · ·xn and 1 − v/x1 have dual contribution;
only the factor 1 − ux1 has a contribution. Thus using the first equality in 4.10 of [5], this contribution is
obtained by removing this factor and then replacing x1 by u−1. Carrying this out gives

1(
1 − uw

x2···xn

)
(1 − uv)

n∏
i=2

1
(1 − xiu)(1 − v/xi)

∏
2≤i<j≤n

1 − xj/xi

1 − qxj/xi

∏
2≤j≤n

1 − uxj

1 − quxj
,

which simplifies to

1(
1 − uw

x2···xn

)
(1 − uv)

n∏
i=2

1
(1 − xiqu)(1 − v/xi)

∏
2≤i<j≤n

1 − xj/xi

1 − qxj/xi
.

Since uw≺ 1 this is exactly 1
1−uv Rn−1(qu, v, uw) if we rename xi by xi−1. Therefore the Lemma follows.

Iterating the above Lemma, together with the easy fact R0(u, v, w) = 1
1−w , we obtain

Proposition 4.1

Rn(u, v, w)|x0
1···x0

n
=

1

(1 − uv)(1 − uvq) · · · (1 − uvqn−1)(1 − unwq(
n
2))

.

Lemma 4.2
We have

R∗
n(u, v, w)|x0

1···x0
n

=
1

1 − uv
R∗

n−1(u, qv, qw)
∣∣
x0
1···x0

n−1
.

Proof
We now use Proposition 4.2 of [5] for the variable xn. Note that since wx1 · · ·xn ≺ 1 the proper

form of 1(
1− 1

wx1···xn

) is −wx1···xn

(1−wx1···xn−1)
. Thus among all the factors containing xn, in the denominator of

R∗
n(u, v, w) , only the factor 1 − v/xn has a dual contribution. Using the second equality in formula 4.10 of

[5] we derive that the constant term of R∗
n(u, v, w) in xn is

1(
1 − 1

vwx1···xn−1

)
(1 − uv)

n−1∏
i=1

1
(1 − xiu)(1 − v/xi)

∏
1≤i<j≤n−1

1 − xj/xi

1 − qxj/xi

∏
1≤i≤n−1

1 − v/xi

1 − qv/xi
,
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This simplifies to

1
(1 − 1/vwx1 · · ·xn−1) (1 − uv)

n−1∏
i=1

1
(1 − xiu)(1 − qv/xi)

∏
1≤i<j≤n−1

1 − xj/xi

1 − qxj/xi
.

Since vw≺ 1 this is exactly 1
1−uv R∗

n−1(u, qv, vw). Therefore the lemma follows.

Iterating the above Lemma, together with the easy fact R0(u, v, w) = 1
1−1/w = − w

1−w (since w≺ 1),
we obtain

Proposition 4.2

R∗
n(u, v, w)

∣∣∣
x0
1···x0

n

= − vnwq(
n
2)

(1 − uv)(1 − uvq) · · · (1 − uvqn−1)(1 − vnwq(
n
2))

.

Now we evaluate the constant terms of Rn(u, v, w) and R∗
n(u, v, w) in another way to obtain recur-

rences involving the constant terms of Qn(u, v, w) and Q∗
n(u, v, w), and then compute these constant terms

by solving the recurrences.

Lemma 4.3
We have

Rn(u, v, w)
∣∣∣
x0
1···x0

n

= Qn(u, v, w)
∣∣∣
x0
1···x0

n−1

+
1

1 − uv
R∗

n−1(u, qv, v/w)
∣∣∣
x0
1···x0

n−1

.

Proof
We will use Proposition 4.2 of [5] with respect to xn. Among all factors in the denominator containing

xn, only the factors 1−w/x1 · · ·xn and 1− v/xn have dual contributions. The dual contribution of the first
factor is

n∏
i=1

1
(1 − uxi)(1 − v/xi)

∏
1≤i<j≤n

1 − xj/xi

(1 − qxj/xi)

∣∣∣
xn=w/x1···xn−1

,

which is exactly Qn(u, v, w). Using the second equality in formula 4.10 of [5], we deriove that the dual
contribution of the second factor is

1(
1 − w/v

x1···xn−1

)
(1 − uv)

n−1∏
i=1

1
(1 − uxi)(1 − v/xi)

∏
1≤i<j≤n−1

1 − xj/xi

(1 − qxj/xi)

n−1∏
i=1

1 − v/xi

1 − qv/xi
,

which simplifies to

1(
1 − w/v

x1···xn−1

)
(1 − uv)

n−1∏
i=1

1
(1 − uxi)(1 − qv/xi)

∏
1≤i<j≤n−1

1 − xj/xi

(1 − qxj/xi)
.

Since w/v� 1, this is clearly 1
1−uv R∗

n−1(u, qv, v/w). The Lemma then follows.
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Applying Lemma 4.3, Propositions 4.1 and Proposition 4.2, we obtain

Theorem 4.1

Qn(u, v, w)
∣∣∣
x0
1···x0

n−1

=
1

(uv)n
×

(
1

1 − unwq(
n
2)

+
vnw−1q(

n
2)

1 − vnw−1q(
n
2)

)
,

where as customary we set
(x)n = (1 − x)(1 − xq) · · · (1 − xqn−1)

Lemma 4.4

R∗
n(u, v, w)|x0

1···x0
n

= − Q∗
n(u, v, w)|x0

2···x0
n

+
1

1 − uv
Rn−1(qu, v, u/w)

∣∣∣
x0
1···x0

n−1

Proof
We apply Proposition 4.2 of [5] with respect to x1. Among all factors in the denominator containing

x1, only the factors 1 − 1/wx1 · · ·xn and 1 − ux1 have contributions. The first contribution is

−
n∏

i=1

1
(1 − uxi)(1 − v/xi)

∏
1≤i<j≤n

1 − xj/xi

(1 − qxj/xi)

∣∣∣
x1=1/wx2···xn

,

which is exactly −Q∗
n(u, v, w). The second contribution is

1(
1 − 1

w/ux2···xn

)
(1 − uv)

n∏
i=2

1
(1 − uxi)(1 − v/xi)

∏
2≤i<j≤n

1 − xj/xi

(1 − qxj/xi)

n∏
j=2

1 − xju

1 − xjqa
,

which simplifies to

1(
1 − 1

w/ux2···xn

)
(1 − uv)

n∏
i=2

1
(1 − quxi)(1 − v/xi)

∏
2≤i<j≤n

1 − xj/xi

(1 − qxj/xi)
.

Since u/w≺ 1, this is clearly 1
1−uv Rn−1(qu, v, u/w) if we rename xi+1 by xi. The lemma then follows.

Applying Lemma 4.4, Propositions 4.1 and Proposition 4.2, we obtain
Theorem 4.2

Q∗
n(u, v, w)

∣∣∣
x0
2···x0

n

=
1

(uv)n
×

(
wvnq(

n
2)

1 − wvnq(
n
2)

+
1

1 − unw−1q(
n
2)

)
. 4.3

Note that the left hand side of 4.1 is none other than the constant term of Q∗
n(q, q, 1). But Theorem

4.2 gives

Q∗
n(q, q, 1)

∣∣∣
x0
2···x0

n

=
1 + q(

n+1
2 )

(q2)n(1 − q(
n+1

2 ))

completing the proof of 4.1.
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Note further that the second case of 4.3, combined with the definition in 4.2 gives (setting w = 1)

n∏
i=1

1
(1 − uxi)(1 − v/xi)

∏
1≤i<j≤n

1 − xj/xi

(1 − qxj/xi)

∣∣∣
xn=w−1/x1···xn−1

∣∣∣
x0
2···x0

n

=
1

(uv)n

(
vnq(

n
2)

1−vnq(
n
2)

+ 1

1−unq(
n
2)

)
. 4.4

This proves Theorem I.4.

5. Our four bases for the UVX invariants.
Returning to UVX invariants we first need to derive Theorem I.5 from Theorem I.4. To this end

note that if the variables ui, vj and xi,j are respectively weighted by u, v and q, then the corresponding
tri-graded Hilbert series FUV X(u, v, q) should be given by the corresponding tri-graded version of Moliens
theorem. This simply means that in the Molien integral we must replace the denominator factor

det |1 − qD(g)| =
n∏

r=1

(1 − qar)(1 − q/ar)
n∏

r,s=1

(1 − qar/as) 5.1

by a tri-graded factor that reflects the separate action of g on the three sets of variables ui, vj and xi,j .
Denoting by D1(g) D2(g) and D3(g) the three diagonal matrices with eigenvalues

a1, a2, . . . an; a−1
1 , a−1

2 , . . . a−1
n ; and aia

−1
j for 1 ≤ i, j ≤ n,

in the integral we must replace 5.1 by the product

det |1 − uD1(g)|det |1 − vD2(g)|det |1 − uDr(q)| =
n∏

r=1

(1 − uar)(1 − v/ar)
n∏

r,s=1

(1 − qar/as) 5.2

This changes 1.13 to

FUV X(u, v, q) =
∫

Tn

n∏
r=1

1
(1 − uar)(1 − v/ar)

n∏
r,s=1

1
(1 − qar/as)

dω(g). 5.3

This given, a close look at the proof of Theorem I.2 given in section 1, quickly reveals that the, replacements
q→u and q→v in the first two factors does not affect the validity of any of the steps. Thus, with these
replacements the proof in section 1 yields

FUV X(u, v, q) =
1

(1 − q)n

n∏
i=1

1
(1 − uxi)(1 − v/xi)

∏
1≤i<j≤n

1 − xi/xj

(1 − qxi/xj)(1 − qxj/xi)

∣∣∣∣
x1x2···xn=1

∣∣∣∣
x0
1x0

2···x0
n

Combining this with Theorem I.5 yields Theorem I.5:

FUV X(u, v, q) =
1∏n

i=1(1 − qi)
∏n

i=1(1 − uvqi−1)

(
vnq(

n
2)

1 − vnq(
n
2)

+
1

1 − unq(
n
2)

)
. 5.4

Now note that the tri-degrees of

Π1 = traceX , Π2 = traceX2 , Π3 = traceX3 , . . . , Πn = traceXn
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are
(0, 0, 1), (0, 0, 2), (0, 0, 3), . . . , (0, 0, n),

the tri-degrees of
θ1 = UV , θ2 = UXV , θ2 = UX2V , . . . , θn = UXn−1V

are
(1, 1, 0), (1, 1, 1), . . . , (1, 1, n − 1)

and those of the two determinants:

Φ(U, X) = det

∥∥∥∥∥∥∥∥∥∥

U
UX
UX2

...
UXn−1

∥∥∥∥∥∥∥∥∥∥
and Ψ(V, X) = det

∥∥∥V, XV, X2V, . . . , Xn−1V
∥∥∥

are
(n, 0,

(
n
2

)
) and (0, n,

(
n
2

)
)

Thus if we assign weights

w(Πi) = qi , w(θj) = uvqj−1 , w(Φ) = unq(
n
2) and w(Ψ) = vnq(

n
2)

we see that 5.4 may be rewritten as the formal series

FUV X(u, v, q) =
∑
r1≥0

· · ·
∑
rn≥0

∑
s1≥0

· · ·
∑
sn≥0

∑
m≥0

w(Π1)r1 · · ·w(Πn)rn × w(θ1)s1 · · ·w(θn)snw(Φ)m

+
∑
r1≥0

· · ·
∑
rn≥0

∑
s1≥0

· · ·
∑
sn≥0

∑
m≥0

w(Π1)r1 · · ·w(Πn)rn × w(θ1)s1 · · ·w(θn)snw(Ψ)m+1
5.5

This brings us in a position to prove
Theorem I.6

The UVX invariants have the tri-graded basis

Bab
1 =

{
ΦaΠr1

1 Πr2
2 · · · θrn

n θs1
1 θs2

2 · · · θsn
n ; Ψb+1Πr1

1 Πr2
2 · · · θrn

n θs1
1 θs2

2 · · · θsn
n : a, b ≥ 0, ri ≥ 0, si ≥ 0

}
5.6

Proof
The identity in 5.5 essentially says that the number of elements of the collection Bab

1 that are tri-
homogeneous of tri-degree r, s,m is exactly equal to the dimension of the subspace Hr,s,m(UV X). Thus to
prove that Bab

1 is a basis it is sufficient to show independence.
To this end, suppose we had a vanishing linear combination P of the monomials in 5.6. Since each

of the tri-homogeneous components of P would have to vanish separately, there is no loss in assuming that
P is tri-homogeneous. Now we have two important facts:

(1) The monomial ΦaΠr1
1 Πr2

2 · · · θrn
n θs1

1 θs2
2 · · · θsn

n has tri-degree

(an, 0, a
(
n
2

)
) +

(
0, 0, (

∑
i iri)

)
+

( ∑
i si,

∑
i si, (

∑
i isi)

)
5.7
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(2) The monomial Ψb+1Πr1
1 Πr2

2 · · · θrn
n θs1

1 θs2
2 · · · θsn

n has tri-degree

(0, (b + 1)n, (b + 1)
(
n
2

)
) +

(
0, 0, (

∑
i iri)

)
+

( ∑
i si,

∑
i si, (

∑
i isi)

)
5.8

This immediately shows that any tri-homogenous linear combination P cannot contain both Φ and
Ψ. Indeed we see from 5.7 and 5.8 that the terms of P that contain Φ are of tri-degree (r, s,m) with r ≥ s

and those that contain Ψ are of tri-degree (r, s,m) with r < s. Now note that if P contains only Φ and is
of tri-degree (r, s,m) then from 5.7 we derive we must have an = r − s for each monomial in P . In other
words, in each term of P , Φ must occur to the power (r − s)/n. Thus any vanishing tri-homogeneous P

that contains only Φ must factor as a product of Φ to some power times a vanishing linear combination that
does not contain neither Φ nor Ψ. Of course we can reach the analogous conclusion interchanging Ψ and Φ
in the previous argument. In summary we thus obtain that by factoring out a power of Φ or Ψ as the case
may be any non trivial tri-homogeneous vanishing combination of the monomials in 4.2 will yield a vanishing
polynomial in Π1,Π2, . . . ,Πn; θ1, θ2, . . . , θn.

We are thus left to show that these polynomials are algebraically independent. But this is an
immediate consequence of the fact that the Jacobian of Π1,Π2, . . . ,Πn; θ1, θ2, . . . , θn with respect to the
variables x11, x22, . . . , x22;u1, u2, . . . , un does not even vanish when we set to zero all the variable xij with
i 	= j. In fact we can easily see that carrying this out results in the Jacobian polynomial

v1v2, . . . vn

∏
1≤i<j≤n

(xii − xjj).

This completes our proof.

Note next that an immediate by-product of this proof is that the collection{
ΦrΨsΠr1

1 Πr2
2 · · · θrn

n θs1
1 θs2

2 · · · θsn
n : r, s, ri, sj ≥ 0

}
5.9

spans the UVX invariants. But since Φ = (Γ+ + Γ−)/2 and Ψ = (Γ+ − Γ−)/2 the same will be true for the
collection

B± =
{

(Γ+)r(Γ−)sΠr1
1 Πr2

2 · · · θrn
n θs1

1 θs2
2 · · · θsn

n : r, s, pi, sj ≥ 0
}

.

Now it is important to note that Φ(U, X) and Ψ(V, X) are not completely independent of the other invariants.
More precisely we have

Proposition 5.1
The product Φ(U, X)Ψ(V, X) may be expresssed in terms of the parameters Π1,Π2, . . . ,Πn ; θ1, θ2, . . . , θn.

Proof
The Cayley-Hamilton theorem gives

θk = UXk−1V = U
( n∑

i=1

(−1)i−1ei(X)Xk−i−1
)
V =

n∑
i=1

(−1)i−1ei(X)θk−i

since the polynomials e1(X), e2(X), · · · , en(X) (the elementary symmetric function of the eigenvalues of X)
may be expressed as polynomials in Π1,Π2, . . . ,Πn it follows that the polynomials θk, (for k > n), can all
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be expressed as polynomials in Π1,Π2, . . . ,Πn ; θ1, θ2, . . . , θn. This given, the assertion follows immediately
from the determinantal identity

Φ(U, X)Ψ(V, X) = det
∥∥∥UXi+jV

∥∥∥
0≤i,j≤n−1

= det
∥∥∥θi+j

∥∥∥
0≤i,j≤n−1

. 5.10

Note next that the two polynomials

Γ+(U, V, X) = Φ(U, X) + Ψ(V, X) and Γ−(U, V, X) = Φ(U, X) − Ψ(V, X)

satisfy the quadratic equation
(Γ+)2 = (Γ−)2 + 4 Φ Ψ. 5.11

This brings us in a position to prove Theorem I.7. That is to show that the two collections

B+ =
{

(Γ+)a(Γ−)bΠr1
1 Πr2

2 · · · θrn
n θs1

1 θs2
2 · · · θsn

n : a ≥ 1 , b, ri, sj ≥ 0
}

and
B− =

{
(Γ+)a(Γ−)bΠr1

1 Πr2
2 · · · θrn

n θs1
1 θs2

2 · · · θsn
n : b ≥ 1 , a, ri, sj ≥ 0

}
are vector space bases for the UVX invariants. To this end note that since deg(Πi) = i, deg(θj) = j + 1 and
deg(Γ+) = deg(Γ−) =

(
n+1

2

)
it follows that

∑
b∈B+

qdeg(b) =
∑

b∈B−

qdeg(b) =
1 + q(

n+1
2 )

(1 − q)
∏n

i=2(1 − qi)2(1 − qn+1)
(
1 − q(

n+1
2 ))

Thus our proof that

FUV X(q;n) =
1 + q(

n+1
2 )

(1 − q)
∏n

i=2(1 − qi)2(1 − qn+1)
(
1 − q(

n+1
2 ))

is equivalent to each of the equalities

a)
∑

b∈B+

qdeg(b) = FUV X(q;n) and b)
∑

b∈B−

qdeg(b) = FUV X(q;n).

This means that both collections B+ and B− have the correct number of elements in each degree. Thus to
prove that they are bases we need only show that they span. Now we have seen that the collection

B± =
{

(Γ+)r(Γ−)sΠp1
1 Πp2

2 · · · θpn
n θs1

1 θs2
2 · · · θsn

n : r, s, pi, sj ≥ 0
}

spans the UVX invariants. This given, note that dropping from B± all terms that contain Γ− to a power
greater than 1 we get B+ while dropping all terms that contain Γ+ to a power greater than 1 gives B−. Now
Proposition 5.1 together with 5.11 assures that, in either case, the loss of these terms does not affect the
spanning property and Theorem I.7 necessarily follows.
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Remark 5.1
Note that we can write

vnq(
n
2)

1 − vnq(
n
2)

+
1

1 − unq(
n
2)

=
vnq(

n
2) − vnq(

n
2)unq(

n
2) + 1 − vnq(

n
2)

(1 − unq(
n
2))(1 − vnq(

n
2))

=
1 − (uvq(n−1))n

(1 − unq(
n
2))(1 − vnq(

n
2))

Thus the trigraded Hilbert series in I.8 may be rewritten in the form

FUV X(u, v, q) =
1∏n

i=1(1 − qi)
∏n

i=1(1 − uvqi−1)

(
1 −

(
uvqn−1

)n)
(1 − unq(

n
2))(1 − vnq(

n
2))

=
1 + uvqn−1 +

(
uvqn−1

)2 + · · · +
(
uvqn−1

)n−1

∏n
i=1(1 − qi)

∏n−1
i=1 (1 − uvqi−1)(1 − unq(

n
2))(1 − vnq(

n
2))

. 5.12

This alternate form of the Hilbert series suggests taking as quasi-generators of the ring of UVX invariants
the polynomials

Π1,Π2, . . . ,Πn ; θ1, θ2, . . . , θn−1 ; Φ,Ψ 5.13

and as separators
1, θn, θ2

n, . . . , θn−1
n . 5.14

This is essentially the contents of Theorem I.8. To establish it we need only use the singly graded Hilbert
series in I.4 which now can be rewritten in the form

FUV X(q) =
1 + qn+1 +

(
qn+1

)2 + · · · +
(
qn+1

)n−1

∏n
i=1(1 − qi)

∏n−1
i=1 (1 − qi+1)(1 − q(

n+1
2 ))(1 − q(

n+1
2 ))

. 5.15

Now let us recall that we obtained, as a by product of the proof of of Theorem I.6, that the collection in 5.9,
namely {

ΦrΨsΠr1
1 Πr2

2 · · · θrn
n θs1

1 θs2
2 · · · θsn

n : r, s, ri, sj ≥ 0
}

5.16

spans the space of UV X invariants. Thus in view of 5.15 to prove Theorem I.8 we need only show that all
the powers θm

n (for m ≥ n) can be removed from 5.16 without affecting the spanning property. Now this is
an immediate consequence of the following

Proposition 5.2
There are polynomials a0, a1, . . . an−1 in Π1, . . . ,Πn; θ1, . . . , θn−1; Φ,Ψ such that

θn = a0 + a1θn + a2θ
2
n + . . . + an−1θ

n−1
n

Proof
We have seen in 5.10 that

ΦΨ = det
∥∥∥θi+j−1

∥∥∥
1≤i,j≤n

. 5.17

We have also seen in the proof of Proposition 5.1 that from the Caley-hamilton Theorem it follows that for
i + j − 1 > n we have

θi+j−1 = si+j−nθn + ti+j−n
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with the sm and tm polynomials in Π1, . . . ,Πn; θ1, . . . , θn−1. Using this in 5.17 gives

Φψ = det




θ1 θ2 · · · θn−2 θn−1 θn

θ2 θ3 · · · θn−1 θn−1 θn

θ3 θ4 · · · θn θn−1 θn

...
...

. . .
...

...
...

θn s1θn + t1 · · · sn−3θn + tn−3 sn−2θn + tn−2 sn−1θn + tn−1




and we see, by expansion with respect to the first row, that all terms of this determinant except the term
coming from second diagonal are of degree at most n − 1 in θn. This proves the result and completes the
proof of Theorem I.8.

Remark 5.2
Surprisingly, it is possible to establish Theorem I.8 without making use of the trigraded Hilbert

series, and thus also obtain the identity in 5.4 itself as a by-product. To obtain such a proof we need
establish the spanning property of the collection in 5.15 without using 5.4. Now note that this spanning
property would itself be a consequence of Theorem I.7. Now Theorem I.7 can be established without using
5.4 by giving a 5.4 independent proof that the collection

B+ =
{

(Γ+)a(Γ−)bΠr1
1 Πr2

2 · · ·Πrn
n θs1

1 θs2
2 · · · θsn

n : a = 0, 1 ; b ≥ 0 ; ri, sj ≥ 0
}

5.18

is independent. More precisely, we need only show that the identity

F (Π1, . . . ,Πn; θ1, . . . , θn,Φ − Ψ) + (Φ + Ψ)G(Π1, . . . ,Πn; θ1, . . . , θn,Φ − Ψ) = 0 5.19

with F and G polynomials in their arguments forces F and G to identically vanish.
Since the 5.4 independent proof of this result is not as simple nor as elementary as our previous

proofs we will only give a brief sketch of the argument.
The idea is to show that 5.19 implies the vanishing of F and G even when we set xi,j = 0 for all

i 	= j and set xi,i = xi for 1 ≤ i ≤ n. Note that these choices give

Πk =
n∑

i=1

xk
i , θk =

n∑
i=1

uivix
k
i , Φ = u1u2 · · ·un∆(x) , Ψ = v1v2 · · · vn∆(x) 5.20

with ∆(x) the Vandermonde determinant in x1, x2, . . . , xn. So that 5.18 can now be rewritten in the form

f(x1, . . . , xn ; u1v1, . . . , unvn ; u1 · · ·un − v1 · · · vn) +

+ (u1 · · ·un + v1 · · · vn) g(x, . . . , xn ; u1v1, . . . , unvn ; u1 · · ·un − v1 · · · vn) = 0
5.21

Moreover, the relations

uivi =
1

∆(x)

n∑
i=1

θi hi,j(x)

which can be obtained by inverting the Vandemonde matrix, can be used to show that the vanishing of f

and g forces the vanishing of F and G.
This reduces us to showing that 5.21 forces the vanishing of f and g.
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To this end note that we also have the relation

(u1 · · ·un + v1 · · · vn))2 = (u1 · · ·un − v1 · · · vn))2 + 4u1v1u2v2 . . . unvn 5.22

Furthermore, it is easy to show, (by computing the Jacobian), that the 2n + 1 polynomials

x1, . . . , xn ; u1v1, . . . , unvn ; u1 · · ·un + v1 · · · vn

form a regular sequence in the ring Q[x1, . . . , xn;u1, . . . , un; v1, . . . , vn]. Thus, if z1, z2, . . . , zn and γ, δ are
indeterminates then 5.21 and 5.22 are equivalent to

f(x1, . . . , xn ; z1, . . . , zn ; γ) + δ g(x1 . . . , xn ; z1, . . . , zn ; γ) = 0 and δ2 = γ2 + 4z1z2 · · · zn.

This would say that the rational function

ν(x1 . . . , xn ; z1, . . . , zn ; γ) = −f(x1, . . . , xn ; z1, . . . , zn ; γ)
g(x1, . . . , xn ; z1, . . . , zn ; γ)

satisfies
ν(x1 . . . , xn ; z1, . . . , zn ; γ)2 = γ2 + 4z1z2 · · · zn.

for all (x1, . . . , xn; z1, . . . , zn; γ) for which it is defined. This is impossible, Thus f and g must vanish
identically and the desired independence of the collection in 5.18 necessarily follows.
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