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ABSTRACT OF THE DISSERTATION

On The Action of the Hall-Littlewood Vertex Operator

by

Michael Zabrocki

Doctor of Philosophy in Mathematics

University of California San Diego, 1998

Professor Adriano Garsia, Chair

The Hall-Littlewood polynomials Hµ[X; t] =
∑

λ`|µ|Kλµ(t)sλ[X] where Kλµ(t) is the

Kostka-Foulkes polynomial, are a one parameter family of symmetric functions which

form a basis for all symmetric functions. Lascoux and Schützenberger show that there

exists a statistic called charge on column strict tableaux such that the Hall-Littlewood

polynomials are given by the formula

Hµ[X; t] =
∑

T∈CSTµ
tcharge(T )sshape(T )[X] (∗)

There exists a symmetric polynomial operatorHm that has the property thatHmHµ[X; t]

= H(m,µ)[X; t] for m ≥ µ1. We give an introduction to Lascoux and Schützenberger’s Jeu

de Taquin and tableau operators. We describe a combinatorial method for computing

the action of the Hm operator on the Schur function basis, sλ[X]. This action can then

be translated into an operator on column strict tableaux to show how the column strict

tableaux of content (m,µ) are created from the column strict tableaux of content µ and

to provide an alternate proof of (∗).

x



Chapter 1

Tableaux and Jeu de Taquin

1.1 Standard definitions of partitions and tableau

A partition λ is a weakly decreasing sequence of non-negative integers with

λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0. The length l(λ) of the partition is the largest i such that

λi > 0. The partition λ is a partition of n if λ1 + λ2 + · · · + λl(λ) = n. We associate

a partition with its Ferrer’s diagram and often use the two interchangeably. We use

the French convention and draw the largest part on the bottom of the diagram. One

partition is contained in another, λ ⊆ µ if λi ≤ µi for all i (the notation is to suggest

that if the diagram for λ were placed over the diagram for µ that one would be contained

in the other).

For every partition λ there is a corresponding conjugate partition denoted by

λ′ where λ′i = the number of cells in the ith column of λ. For example, the conjugate

partition of λ = (4, 4, 3, 3, 1) is λ′ = (5, 4, 4, 2).

Figure 1.1: The Ferrer’s diagrams corresponding to the conjugate partitions (4, 4, 3, 3, 1)
and (5, 4, 4, 2).

1
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(6, 4, 4, 2)/(4, 4, 2) (4, 2, 2, 1, 1)/(3, 1, 1) (6, 6, 4, 3, 2, 1)/(5, 3, 3, 3)

Figure 1.2: Examples of horizontal, vertical, and border strips

A skew partition is denoted by λ/µ, where it is assumed that µ ⊆ λ, and

represents the cells that are in λ but are not in µ. A skew partition λ/µ is said to be a

horizontal strip if there is at most one cell in each column. Denote the class of horizontal

strips of size k by Hk so that the notation λ/µ ∈ Hk means that λ/µ is a horizontal

strip with k cells. Similarly, the class of vertical strips (skew partitions with only one

cell in each row) will be denoted by Vk and the class of border strips (skew partitions

that contain no 2x2 subpartitions) will be denoted by Bk.
For a fixed partition λ say that a partition ν precedes λ, and use the notation

ν → λ, if λ/ν is a single cell. Also say that a partition µ follows λ, and use the notation

µ← λ if µ/λ is a single cell. The symbol ν → λ as an index of a summand means that

the sum is over all partitions formed by removing a corner cell of λ.

The partitions of n can be given a partial ordering by the definition µ ≤ λ if

and only if µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi for all i. This ordering is called the dominance

order.

If λ is a partition, then let λr denote the partition with the first row removed,

that is λr = (λ2, λ3, . . . , λl(λ)). Let λc denote the partition with the first column removed,

so that λc = (λ1−1, λ2−1, . . . , λl(λ)−1). This allows us to define the border of a partition

µ to be the skew partition µ/µrc.

Define the k-snake of a partition µ to be the k bottom most right hand cells

of the border of µ (the choice of the word ”snake” is supposed to suggest the cells that

slink with its belly on the ground from the bottom of the partition up along the right

hand edge). We use the symbol htk(µ) to denote the height of the k-snake. The symbol

µck = (µ2−1, µ3−1, . . . , µh−1, µ1 +h−k−1, µh+1, . . . µl(λ)) will be used to represent a
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λ = (5, 4, 2, 2, 1) λr = (4, 2, 2, 1) λc = (4, 3, 1, 1) λrc = (3, 1, 1)

the border of λ = λ/λrc λc4 = (3, 3, 2, 2, 1) λc5 does not exist

Figure 1.3: Examples of λ, λr, λc, λrc, λ/λrc, and λcn

partition with the k-snake removed with the understanding that if removing the k-snake

does not leave a partition that this symbol is undefined.

If the shape of ρ = λck is given and the height of the k-snake is specified then

λ can be recovered (λ is determined from ρ by adding a k-snake of height h). This is

because

λ = (ρh + k − h+ 1, ρ1 + 1, ρ2 + 1, . . . , ρh−1 + 1, ρh+1, ρh+2, . . . , ρl(ρ)) (1.1)

and so λ will be a partition as long as k is sufficiently large.

A column strict (skew) tableau is a diagram of a partition (or skew partition)

with each cell labeled with a positive integer such that the labels increase weakly traveling

from left to right in the rows and the labels increase strictly traveling from bottom to

top in the columns. All tableaux here are column strict, so a tableau means a column

strict tableau.

Let T be a column strict tableau. Denote the shape of the tableau by λ(T ),

the total number of cells in the diagram by |T |, and the number of cells labeled with an
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i by the symbol Ti. The content of the tableau will be the tuple µ(T ) = (T1, T2, . . . , Th)

(where h is the highest label that appears in the tableau). T is said to be of partition

content if the content vector µ(T ) is a partition. The content of a word is defined

similarly (the tuple consisting of (the number of 1’s in the word, the number of 2’s in

the word, etc.))

A useful statistic defined on compositions, µ, is n(µ) =
∑

i µi(i− 1).

1.2 Jeu de Taquin

Take a skew tableau of shape λ/µ and let ρ be a partition such that ρ ← λ,

therefore ρ/λ is a single cell, c. A forward slide into c is an transformation on the tableau.

The cell with the largest label that is immediately south or west of c is moved into c

creating an empty cell. The newly vacated cell is filled with the contents of the largest

label that is south or west of that cell. This continues until the vacated cell = ν/µ for

some partition ν ← µ.

Example 1.2.1. - perform a forward slide into the cell labeled by c

5 7 8 c

3 3 4 4 5 9

1 1 1 2 2 6

−→
3 5 7 8

3 4 4 5

1 1 1 2 2 6

Again consider a skew tableau of shape λ/µ, but now let ν be a partition such

that ν → µ and let c = µ/ν. A reverse slide into c is another transformation on the

skew tableau that is just the inverse of the forward slide. The contents of the cell with

the smallest label that is immediately to the north or east of c is moved into c leaving

an empty cell behind. The newly vacated cell is filled with the contents of the smallest

label that is north or east of that cell. This continues until the vacated cell = λ/ρ for

some partition ρ→ λ.

Example 1.2.2. - perform a reverse slide into the cell labeled by c

3 4 5 9

1 1 2 2 3 8
c 1 2 6 7

−→
3 4 5 9

1 1 2 3 8

1 2 2 6 7
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The sequence of cells involved in a forward or reverse slide is called the slide

path. An important observation is that slide paths do not cross, that is, if c1 = µ/ν1

and c2 = ν1/ν2 are cells such that ν1 → µ and ν2 → ν1 then the slide path of c1 lies

weakly to the left of the slide path of c2.

We say that a skew tableau is of straight shape if the shape is a partition. Any

skew tableau can be brought to straight shape by applying a sequence of reverse slides

until it is of straight shape. There is usually more than one sequence of operations that

will bring any one skew tableau to straight shape but is a theorem attributed to both

Thomas [T] and Schützenberger [S1] that says the tableau obtained by bringing a skew

tableau to straight shape is independent of the sequence of reverse slides.

Example 1.2.3. - a tableau brought to straight shape under any sequence of reverse

slides is the same

3 4 5 9

1 1 2 2 3 8

1 2 6 7

−→
3 4 5 9

1 1 2 3 8

1 2 2 6 7

−→
3 4 5 9

1 2 3 8

1 1 2 2 6 7

−→

3 4 5 9

2 3 8

1 1 1 2 2 6 7

−→
3 4 9

2 3 5 8

1 1 1 2 2 6 7

−→
3 4 9

2 3 5 8

1 1 1 2 2 6 7

OR

3 4 5 9

1 1 2 2 3 8

1 2 6 7

−→
3 4 5 9

1 1 2 2 3 8

1 2 6 7

−→
3 4 5 9

1 1 2 2 3 8

1 2 6 7

−→

3 4 5 9

1 1 2 3 8

1 2 2 6 7

−→
3 4 5 9

1 2 3 8

1 1 2 2 6 7

−→
3 4 9

2 3 5 8

1 1 1 2 2 6 7

This theorem implies a definition of an equivalence relation. Say that two skew

tableau are Jeu de Taquin (JdT) equivalent if they are the same when they are brought

to straight shape. This means that applying any number of forward and reverse slides

to a tableau leaves it in the same equivalence class.
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Concatenation of tableau defines a non-commutative multiplication on tableau

under this equivalence relation. If S and T are skew tableau, then define ST to be the

skew tableau under the Jeu de Taquin equivalence formed by placing S to the north and

west of T . This gives a monoid structure to the set of tableau under JdT equivalence.

1.3 Robinson-Schensted correspondence

Let T be a column strict tableau. There is an operation that inserts a label

into the tableau called row insertion. Let x be a non-negative integer label. Replace the

entry in the first row that is larger than x and is farthest to the left. Let the y be the

displaced label (call y the bumped cell). If no label is in the first row is larger than x

then place x at the end of the first row. If x displaces a cell with label y then insert the

label y in the second row by either replacing the entry that is larger than y and farthest

to the left or by placing it at the end of the second row. Repeat this process until an

entry is added to the end of a row.

Example 1.3.1. - row insert the label 4 into a tableau

Row insert a 4 into
3 4 9

2 3 5 8

1 1 1 2 2 6 7

−→

9

3 4 8

2 3 5 6

1 1 1 2 2 4 7

Knowing the location of the last cell placed in the row insertion algorithm is

enough to reverse the process and recover the original tableau and the inserted label.

The operation of row deletion is the reverse of row insertion. The operation requires

specifying the tableau and a corner cell of the tableau.

If y is the label of a corner cell of T then find the cell on the previous row that

is strictly smaller than and farthest to the right. Replace that entry with the label y

and let x be the label that was displaced. Find the entry on the previous row that is

strictly smaller than x and farthest to the right. Again replace that entry with the label

x and continue this way until the first row is reached. The cell from the first row that is

displaced is called the ejected cell.
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Example 1.3.2. - row delete the corner cell labeled by 9 in the tableau

Row delete the topmost corner of the tableau
3 4 9

2 3 5 8

1 1 1 2 2 6 7

yields
3 4

2 3 5 9

1 1 1 2 2 6 8

and ejects a 7 .

The operation of column insertion and deletion can be similarly defined.

To define column insertion, let T be a column strict tableau and x a non-

negative integer label. Replace the entry in the first column that is larger than or equal

to x and is farthest to the south. Let the y be the displaced label. If no label is in the

first column is larger or equal to x, then place x at the end of the first column. If x

displaces a cell with label y, then insert the label y in second column by either replacing

the entry that is larger than or equal to y and farthest to the south or by placing it at

the end of the first column. Repeat this process until an entry is added to the end of a

column.

Example 1.3.3. -column insert the label 2 into the tableau

Column insert a 2 into
3 4 9

2 3 5 8

1 1 1 2 2 6 7

−→
3 4 9

2 2 3 5 8

1 1 1 2 2 6 7

If the location of the last cell placed in the column insertion algorithm is known

then the operation can be inverted. Just as row deletion was defined as the inverse

operation to row insertion we can define what it means to column delete a corner cell

of a tableau. The operation of column deletion requires selecting a corner cell of the

tableau. The result is an ejected label and a tableau with one less cell.

If y is the label of a corner cell of T then find the cell on the previous column

that is greater than or equal to and farthest north. Replace that entry with the label y

and let x be the label that was displaced. Find the entry on the previous column that

is larger than or equal to x and farthest north. Again replace that entry with the label

x and continue this way until the first column is reached. The cell from the first column

that is displaced is called the ejected cell.



8

Example 1.3.4. -column delete the corner cell labeled by 8 in the tableau

Column deleting the middle corner of the tableau
3 4 9

2 3 5 8

1 1 1 2 2 6 7

yields
4 5 9

2 3 8

1 1 1 2 2 6 7

and ejects a 3 .

The sequence of cells involved in the insertion or deletion process is the bumping

path of the insertion or deletion.

1.4 Jeu de Taquin and the Robinson-Schensted correspon-

dence

The operations of row and column insertion can be expressed in terms of JdT

operations so that insertion can be recognized as a special case of multiplication in the

tableau monoid. The skew tableau with label x placed south and east of a tableau T is

Jeu de Taquin equivalent to the tableau produced by row inserting x into T .

This statement is not very obvious until one shows what happens to a single

row when a cell with label x is placed south and east. Verify that for a single row,

placing a cell south and east is JdT equivalent to the effect of row inserting x into the

row (either it is a single row with x at the end or it is a row with x displacing a bumped

cell y that is north and west of the row).

• • • • • •
x
−→ • • • • • • x OR

y

• • • x • •

When T is not a single row, it is JdT equivalent to the concatenation of its

rows, that is T = rkrk−1 . . . r2r1 where ri denotes the cells in the ith row of T . Let yi

be the bumped label in the row insertion of the ith row and r′i be the row after yi−1

displaces a cell in ri, then
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Tx = rkrk−1 . . . r2r1x

= rkrk−1 . . . r2y1r
′
1

= rkrk−1 . . . y2r
′
2r
′
1

...

= rkrk−1 . . . rj+1yjr
′
i . . . r

′
2r
′
1

For some j, yj will be larger than all the cells in rj+1 and the resulting rows

will form a tableau.

To see this graphically, notice that any tableau is the concatenation of its rows

• • •
• • • •
• • • •
• • • • •

x

−→
is JdT equivalent to

• • •
• • • •

• • • •
• • • • •

x

Either there is a label in the first row that is larger than x or x is greater than or equal

to the label in every cell in the row so the second of these diagrams is JdT equivalent to

either

• • •
• • • •

• • • •
y1
• • • x •

OR

• • •
• • • •

• • • •
• • • • • x

Either there is a label in the second row that is larger than y1 or y1 is greater than

or equal to the label in every cell in the row so the second of these diagrams is JdT

equivalent to either

• • •
• • • •

y2
• • • y1

• • • x •

OR

• • •
• • • •

• • • • y1
• • • x •

etc.

Breaking down the rows in this way shows that the steps in performing JdT

on each of the rows individually is exactly the same as the procedure outlined in the

Robinson-Schensted row insertion algorithm.
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x
• • •
• • • •
• • • •
• • • • •

−→

x
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure 1.4: A tableau written as the product of its columns.

If the cell x is placed to the north and west of the tableau T , then the resulting

straight shape tableau is the same one produced by column inserting the cell x into T ,

that is xT is JdT equivalent to column inserting x into T .

The justification is similar to the analogous statement for row insertion, first

by verifying the statement for single column, and then recognizing that a tableau T can

be written as the product of its columns, T = c1c2 . . . ck where ci represents the cells in

the ith column.

Placing the cell with a label of x to the north and west of the tableau and

breaking the tableau into columns makes it easier to see why this operation is equivalent

to column insertion. It is not hard to verify they are equivalent when the shape is a

single column. For a general tableau, since a tableau can be written as the product of

its columns, the figure below shows why a single cell is placed to the north and west has

the same effect as the Robinson-Schensted column insertion algorithm.

1.5 Knuth relations

To any skew tableau there is a reading word associated to it formed by reading

the entries in the cells in each of the rows from left to right, starting with the top row.

The reading word of the tableau T will be denoted by R(T ).

There is an equivalence relation on words due to Knuth that is equivalent to
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the Jeu de Taquin equivalence relation on tableau.

If x, y and z are letters in the words u and v and w and w̃ are subwords then

say that two words u and v are elementary Knuth equivalent if either u = wxzyw̃ and

v = wzxyw̃ where x ≤ y < z or u = wyzxw̃ and v = wyxzw̃ where x < y ≤ z.
Next say that two words u and v are Knuth equivalent and write u ∼ v if they

are in the symmetric, transitive, reflexive closure of the elementary Knuth equivalence.

The following theorem shows the relationship between the Knuth equivalence

and the JdT equivalence.

Theorem 1.5.1. (Knuth) Two tableau S and T are Jeu de Taquin equivalent iff R(T ) ∼
R(S).

This theorem follows because if x ≤ y < z then

x

z
y
←→ z

x y
←→

z

x
y

and if x < y ≤ z then
y

z

x
←→ y

x z
←→

y

x

z

With the operation of concatenation, the words of the positive integer labels

forms a monoid. This monoid modulo the Knuth equivalence relation is isomorphic to

the monoid of tableau mentioned earlier.

1.6 Charge

There is a statistic defined on words that was introduced by Lascoux and Schüt-

zenberger called charge. It is central in the discussion in the remainder of this document.

First, charge is defined for words of content weight µ = 1n. An index is given

to each letter in the word. The index 0 is assigned to 1. If the letter i has index k then

the index of the letter i+ 1 is k if i+ 1 lies to the left of i and the index is k+ 1 if i+ 1

lies to the right of i. The charge of the word is defined to be the sum of the indices.

Example 1.6.1. Let w = 638152479 then the index for each letter is given by 6
2
3
1
8
3
1
0
5
2
2
1
4
2
7
3
9
4

and the charge of w is 2 + 1 + 3 + 0 + 2 + 1 + 2 + 3 + 4 = 18.
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If w is a word with content of partition weight then it is first broken up into

standard subwords by the following procedure. Place an x under the first 1 in the word

traveling from right to left. Next place an x under the first 2 traveling to the left from

there. Continue placing an x underneath each of the letters 1 through l(µ(w)) traveling

from right to left and beginning again at the right side of the word each time the left

hand side is reached. The first standard subword consists of the letters that have xs

underneath them read from left to right. Erase these letters to form a new word w′

and repeat the procedure forming the next standard subword with the letters 1 through

l(µ(w′)). Stop when all letters have been erased. The charge of the word is then defined

to be the sum of the charges of the standard subwords.

Example 1.6.2. Let w = 8631412215342795 which has content µ(w) = (3, 3, 2, 2, 2, 1, 1,

1, 1). This word has standard subwords and indices given by

w1 = 8
2
6
1
3
0
2
0
1
0
5
1
4
1
7
2
9
3 has charge 10

w2 = 4
1
1
0
3
1
2
1
5
2 has charge 5

w3 = 1
0
2
1 has charge 1

Therefore the charge of w is 10 + 5 + 1 = 16.

Lastly, the charge of a tableau is defined to be the charge of the reading word

of the tableau.

Example 1.6.3. The tableau

T =
3 4 9

2 3 5 8

1 1 1 2 2 6 7

has a reading word of R(T ) = 34923581112267 and the reading word has standard sub-

words

R(T )1 = 3
0
4
1
9
5
2
0
5
2
8
4
1
0
6
3
7
4 has charge 19

R(T )2 = 3
1
1
0
2
1 has charge 2

R(T )3 = 1
0
2
1 has charge 1

Therefore the charge of the tableau is 19 + 2 + 1 = 22.
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Denote the charge of a tableau, T , by c(T ) and of a word, w, by c(w).

It is a theorem that if two words w ∼ w′ are Knuth equivalent then the charge

of the words is equal. This comes first by showing that this is true when w and w′ are

words with content 1n and then showing that if w ∼ w′ then the ith standard subword

of w is Knuth equivalent to the ith standard subword of w′. The second of these two

statements is not trivial to show and the details may be found in [K] or [Bu].

Considering only tableau of content µ where µ is a partition, the tableau of

smallest charge has shape µ with only i’s in the ith row. The charge of this tableau will

be zero and every other tableau of content µ has shape that is both strictly larger in

dominance order and strictly larger in charge than this tableau. A tableau that is only

one row high will have maximal charge and the charge will be n(µ).

Example 1.6.4. Of the tableaux of content µ = (3, 2, 2, 1), only the tableau

4

3 3

2 2

1 1 1

has charge 0 and the tableau 1 1 1 2 2 3 3 4 has charge n(µ) = 9.

1.7 Cyclage

There are operations on words and tableau that have the effect of raising and

lowering the charge by exactly 1. Let w = xu where x is the first letter of w and u is the

remainder of the word, then the cyclage of w is defined to be w′ = ux. If w = ux where

x is the last letter of w and u is the remainder of the word, then the un-cyclage of w is

defined to be w′ = xu.

Let w be a word such that the first letter is not a 1. Let w′ be the cyclage of w,

the charge of w′ is one more than the charge of w (and therefore if a letter that is not 1

is uncyclaged then the charge decreases by 1). This follows directly from the definition

of charge since the cyclage operation (as long as the first letter of the word is not 1) only

changes one of the standard subwords by moving one letter from the beginning of the

word to the end, increasing the index of that letter by 1.

Example 1.7.1. Consider the word w = 8631412215342795 has the following standard
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subwords and indices 8
2
6
1
3
0
2
0
1
0
5
1
4
1
7
2
9
3,

4
1
1
0
3
1
2
1
5
2,

1
0
2
1 and thus the word has charge 10 + 5 + 1 = 16.

The cyclage of the word is 6314122153427958 and this word has the standard

subwords and indices 6
1
3
0
2
0
1
0
5
1
4
1
7
2
9
3
8
3,

4
1
1
0
3
1
2
1
5
2,

1
0
2
1 and thus this word has charge 11 + 5 + 1 = 17.

The uncyclage of this word is 5863141221534279 and this word has the standard

subwords and indices 8
2
6
1
3
0
2
0
1
0
5
1
4
1
7
2
9
3,

5
1
4
1
1
0
3
1
2
1,

1
0
2
1 and thus the word has charge 10 + 4 + 1 = 15.

Cyclage on a tableau is defined to be the operation of moving a single cell that

is north and west of the rest of the tableau to the south and east of the remainder (move

the label from the beginning of the reading word to the end of the reading word).

The operation of cyclage can be defined on a straight shape tableau in terms

of column deletion and row insertion.

Since column insertion is equivalent to putting a single cell to the north and west

of a tableau and playing Jeu de Taquin, then column deletion is equivalent to playing

Jeu de Taquin to move a cell just north and west of the remainder of the tableau.

Placing a cell to the south and east of a tableau and bringing the tableau to

straight shape is equivalent to row inserting the cell. Picking a cell up from the north

and west of a tableau and placing it to the south and east has the effect of moving the

label from the beginning of the reading word to the end.

Example 1.7.2. Column deleting the corner cell labeled by a 8 in the tableau

3 4 9

2 3 5 8

1 1 1 2 2 6 7

produces the tableau
4 5 9

2 3 8

1 1 1 2 2 6 7

and ejects a 3 .

This implies that the tableau

3 4 9

2 3 5 8

1 1 1 2 2 6 7

−→
is JdT equivalent to

3

4 5 9

2 3 8

1 1 1 2 2 6 7
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Example 1.7.3. Row inserting a the label 3 into the tableau
4 5 9

2 3 8

1 1 1 2 2 6 7

yields

the tableau
9

4 5 8

2 3 6

1 1 1 2 2 3 7

This implies that the skew tableau

4 5 9

2 3 8

1 1 1 2 2 6 7

3

−→
is JdT equivalent to

9

4 5 8

2 3 6

1 1 1 2 2 3 7

Specify a corner cell of a tableau T by picking a shape ν such that ν precedes

λ(T ). Perform a column deletion on the corner cell that corresponds to λ(T )/ν and then

row insert the ejected cell. This will be the operation of cyclage (if the corner cell is the

highest corner on T then this operation is also called top-cyclage) on a straight shape

tableau and it will be denoted by the operator by Cν that acts on column strict tableaux

such that λ(T ) is a partition and λ(T )/ν is a single cell. The resulting tableau, CνT ,

will also have the property that λ(CνT )/ν is a single cell.

Because this is equivalent to performing cyclage on the reading word of the

tableau, this operation has the effect of increasing the charge of the tableau by one as

long as the label of the cell that was ejected in the row deletion is not a 1. A shape that

is more than one row high will always have at least one corner such that the row deletion

will not eject a cell labeled by 1. The top-cyclage on a tableau will always increase the

charge by exactly one unless the tableau is one row high.

Example 1.7.4. Let ν = (7, 3, 3). To find the cyclage

Cν

3 4 9

2 3 5 8

1 1 1 2 2 6 7

perform the column deletion on the corner cell labeled by 8 . Row insert the ejected cell
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label 3 to produce the tableau

9

4 5 8

2 3 6

1 1 1 2 2 3 7

The starting tableau has a reading word 34923581112267 and charge 21. The reading

word of the cyclaged tableau is 94582361112237 and this has charge 22.

Uncyclage on a straight shape tableau will be defined to be the reverse of this

operation. Pick a corner cell of the tableau and perform row deletion and then column

insert the ejected cell. The uncyclage operation will be denoted simply by C−1ν .

Example 1.7.5. Again let ν = (7, 3, 3). To find the un-cyclage

C−1ν

3 4 9

2 3 5 8

1 1 1 2 2 6 7

perform the row deletion on the corner cell labeled by 8 . This ejects a label of 7 which

when column inserted into the resulting tableau yields

7

3 4 9

2 3 5

1 1 1 2 2 6 8

The starting tableau has charge 21 and the resulting tableau has reading word 73492351112

268 and charge 20.

1.8 The cyclage poset

The set CSTµ forms a ranked poset with the covering relation S covers T if

T can be obtained from S by performing one cyclage operation such that the label of

the row ejected/column inserted cell is not a 1. The rank of a tableau T in the poset

is given by n(µ(T )) − c(T ), this follows because cyclage of a cell that is not a 1 is an

invertible operation that increases the charge by 1 and the charge of the bottom element
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(the tableau of one row) has charge of n(µ). The rank function on the tableau is called

the cocharge of the tableau which will be denoted by co(T ). The top element of the

poset will be the tableau of shape µ with µi i’s in the ith row. The minimal element in

the poset will be the single row shape of content µ. Notice that any cyclage operation

performed on the one row tableau will always cyclage a cell with a minimal label which

does not decrease the cocharge.

Example 1.8.1. The cyclage poset for µ = (2, 2, 1)

3

2 2

1 1
↙ ↘

3

2

1 1 2

2 2

1 1 3

↓ ↓
2

1 1 2 3

2 3

1 1 2
↘ ↙

3

1 1 2 2
↓

1 1 2 2 3

An important property of the cyclage posets is that for µ ≥ ν in dominance

order then there exists an injection θµν from the poset CSTµ to CST ν that preserves

the cocharge as the rank.

Example 1.8.2. The cyclage poset for µ = (2, 1, 1, 1).

Notice in the poset below that there exists a subposet of that is isomorphic to

the cyclage poset for µ = (2, 2, 1) such that all the shapes are the same and and the rank

agrees, this will be the image of the map θ(2,2,1)(2,1,1,1).

In this diagram, an arrow is drawn down for each possible cyclage. In particular,

each tableau (except for the one of a single row shape) will have at least one arrow pointing
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down for the top cyclage and possibly more arrows if there are other corners such that a

column deletion ejects something other than a 1.

4

3

2

1 1
↓

3

2

1 1 4

↓
4

2

1 1 3

2 4

1 1 3

4

2 3

1 1

↓ ↓ ↙ ↓

2

1 1 3 4

4

3

1 1 2

2 3

1 1 4

↘ ↓ ↓
3

1 1 2 4

3 4

1 1 2
↓ ↙

4

1 1 2 3
↓

1 1 2 3 4

The injections θµν will be defined in a later section, but it should be noted

now that they do not preserve the charge function, but they do preserve the cocharge

function. Charge has the property that c(T ) + co(T ) = n(µ(T )) and that the co(T ) is

always the rank in the cyclage poset so that the cocharge of a tableau is the number

of cyclage operations needed to bring the tableau to a one row shape. This will be

the property that will be important when the definition of the charge and cocharge is

extended to tableaux that have content weight that is not a partition.

For an arbitrary column strict tableau , T (one that does not necessarily have

content that is a partition), define the cocharge to be the number of top-cyclage oper-

ations that must be applied to a tableau T so that it is a one row shape. That means
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that any tableau that is one row high has cocharge equal to 0, and the charge of other

tableau can be measured by its ”distance” from the one row shape. It is a proposition

of Lascoux and Schützenberger that the top-cyclage operator is a covering relation for

a ranked poset where the bottom element is always the one row shape. A proof of this

proposition can be found in [LS1] or in [Br].

We will always define the charge so that c(T ) = n(µ(T ))− co(T ), even if µ(T )

is not a partition.

Some operations that are of interest have the property that they preserve

the charge or cocharge. The following proposition gives a criterion for preserving the

cocharge.

Proposition 1.8.1. An operator on tableau preserves the cocharge if it commutes with

the operation of top-cyclage and the operation on a 1-row shape produces a 1-row shape.

That is, an operator on tableau f preserves cocharge if fCνT = CνfT for all T where

ν is the shape that corresponds to top corner of T and f acting on a one row shape is

again a one row shape.

Proof. If the cocharge of T is k then there is a sequence of k top-cyclages that bring it

to straight shape. Let (ν1, ν2, . . . , νk) be the sequence then

co(fCνk · · ·Cν2Cν1T ) = 0 = co(Cνk · · ·Cν2Cν1fT ) = co(fT )−k Thus co(T ) = co(fT ) =

k.

1.9 The action of Sn on the content of tableau and words

There is a definition of a symmetric group action that permutes the content

but leaves the shape unchanged, The transposition (i, i+ 1) will interchange the number

of cells labeled with an i and the number of cells that are labeled with an i+ 1 leaving

the shape of the tableau unchanged. The action of (i, i + 1) is easy to see on the two

row shape that has only i’s and i+ 1’s by looking at the figure below.

If there are more i’s than i+ 1’s (Ti > Ti+1) in the two row shaped tableau T ,

then change the rightmost Ti − Ti+1 i’s to i + 1’s. If there are more i + 1’s than i’s in

the two row shaped tableau T , then change Ti+1−Ti of the i+ 1’s to i’s in the first row.
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Example 1.9.1. Apply the transposition (4, 5) to a two row shape containing only 4’s

and 5’s

5 5 5 5

4 4 4 4 4 4 4 4 5 5
−→

change 4’s to 5’s
5 5 5 5

4 4 4 4 4 4 5 5 5 5

The definition of (i, i + 1) on any column strict tableau T is defined by a

procedure on the cells in T that are labeled with an i or an i+ 1.

1. Ignore all cells of T that are not labeled with i or i+ 1.

2. Bring the cells labeled with i and i+ 1 to straight shape recording the shape of the

skew tableau for each JdT move.

3. Perform the action of (i, i+ 1) on the tableau that is at most two rows high. This

is defined in the procedure above.

4. Perform JdT moves in the reverse order used to bring the cells to straight shape.

5. The tableau with the changes to the cells labeled with i and i + 1 is the result of

(i, i+ 1)T .

Since the transpositions (i, i + 1) generate the symmetric group, this defines

the action of Sn on the content of the tableau. If T ∈ CSTµ then σT ∈ CST σµ where

σµ = (µσ(1), µσ(2), . . . , µσ(l(µ))).

Example 1.9.2. The tableau T =

6

4 4

2 3 7

1 2 5 8

has content µ(T ) = (1, 2, 1, 2, 1, 1, 1, 1).

To act on by the transposition (4, 5) perform the following steps.

(4, 5)

6

4 4

2 3 7

1 2 5 8

−→
ignore all but 4’s and 5’s

4 4

5

−→
bring to straight shape 4 4 5

−→
exchange the number of 4’s and 5’s 4 5 5



21

−→
return cells to original positions

4 5

5

−→
restore remainder of tableau

6

4 5

2 3 7

1 2 5 8

This definition does require some justification because it is not clear that (i, i+1)

is well defined (there are many choices that are made when bringing the cells labeled

with an i or i+ 1 to straight shape or that the reverse JdT slides will produce the same

shapes), for this we refer to [Fu] appendix A.3.

It also must be checked that the transpositions satisfy the coxeter relations

to verify that they generate the symmetric group. The fact that (i, i + 1)2 = 1 and

(i, i + 1)(j, j + 1) = (j, j + 1)(i, i + 1) if |i − j| ≥ 2 are clear from the definition. The

relation (i, i+ 1)(i+ 1, i+ 2)(i, i+ 1) = (i+ 1, i+ 2)(i, i+ 1)(i+ 1, i+ 2) is not as clear

and there is something to check.

The Sn action on tableaux preserves cocharge. To verify this it must be checked

that (i, i + 1) commutes with cyclage. Since the effect of (i, i + 1) leaves the cocharge

fixed then it must be that the charge has the property that c((i, i + 1)T ) = n(µ((i, i +

1)T ))− co((i, i+ 1)T ) = Ti − Ti+1 + n(µ(T ))− co(T ) = Ti − Ti+1 + c(T ).

1.10 The injection θµν : CST µ → CST ν

As was mentioned in previous sections, if µ ≥ ν in dominance order then there

exists a cocharge preserving injection, θµν that maps the column strict tableau of content

µ to the column strict tableau of content ν. This result is a theorem of Lascoux and

Schützenberger. In addition, they show that if µ ≥ ν ≥ ω then θµω = θµν ◦ θνω.

By design this map will preserve cocharge and the effect on the charge will

depend on µ and ν. The relation is given by the dependence

c(θµνT ) = n(ν)− co(θµνT ) = n(ν)− co(T ) = n(ν)− n(µ) + c(T )
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To compute the map θµν on a column strict tableau T , find the sequence of

shapes of top-cyclages that bring T to a one row shape Rµ = Cνk · · ·Cν2Cν1T . The

image of the one row shape of content µ is the one row shape of content ν, Rν . Perform

the un-cyclages corresponding to the cyclages used to bring T to a one row shape and

let θµνT = C−1ν1 C
−1
ν2 · · ·C

−1
νk
Rν .

Example 1.10.1. The image of
2 2

1 1 1
under the maps θ(3,2)(2,2,1), θ(3,2)(2,1,1,1), and

θ(3,2)(1,1,1,1,1) can be computed by the following diagram.

2 2

1 1 1

2 3

1 1 1

3 4

1 1 2

4 5

1 2 3

C(3,1) ↓ C−1(3,1) ↑ C−1(3,1) ↑ C−1(3,1) ↑
2

1 1 1 2

3

1 1 2 2

4

1 1 2 3

5

1 2 3 4

C(4) ↓ C−1(4) ↑ C−1(4) ↑ C−1(4) ↑

1 1 1 2 2 → 1 1 2 2 3 → 1 1 2 3 4 → 1 2 3 4 5

Therefore we have that

θ(3,2)(2,2,1)
2 2

1 1 1
=

2 3

1 1 1

θ(3,2)(2,13)
2 2

1 1 1
=

3 4

1 1 2

θ(3,2)(15)
2 2

1 1 1
=

4 5

1 2 3

1.11 Insertion and deletion of 1s in a tableau

The operation of deleting the first n cells labeled with 1s on a tableau T of

content (m+n, µ) and then playing Jeu de Taquin to bring the tableau to straight shape

does not change the charge or cocharge if m ≥ µ1. The charge remains the same because

in the word definition of charge killing the n 1s only deletes standard subwords of length

one and charge 0. The cocharge remains the same because the charge is the same and

n(m,µ) = n(m + n, µ). Let Kn(T ) denote the tableau produced by this operation (Kn
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stands for kill n cells labeled by 1). Kn is a surjection from the tableau of content

(µ1 + n, µ2, . . . , µk) to the tableau of content µ.

Kn(T ) has the property that λ(T )/λ(Kn(T )) is a horizontal strip and c(T ) =

c(Kn(T )). λ(T )/λ(Kn(T )) will be a horizontal strip because the n 1s that are deleted

are a horizontal strip and their paths under the Jeu de Taquin operation will keep them

as a horizontal strip as cells travel to the outside of the shape. The reason the charge

does not change is that the skew tableau of T with the extra 1s removed has the same

charge as T and Jeu de Taquin operations on that skew tableau does not change the

charge.

Example 1.11.1. Apply K6 to the tableau below of content (9, 3, 2, 1, 1, 1, 1, 1)

K6

6

3 5 7

2 2 2 3 8

1 1 1 1 1 1 1 1 1 4

=

6

3 5 7

2 2 2 8

1 1 1 3 4

both of these tableau have charge 9. The resulting tableau has content (3, 3, 2, 1, 1, 1, 1, 1).

Starting with a tableau T of content (m,µ) (with m ≥ µ1) and a partition λ of

m+ n+ |µ| such that λ/λ(T ) is a horizontal strip, it is possible to add n 1s to T in an

inverse operation to Kn under certain conditions. Denote the operator that adds the n

1s to the tableau in this way by Aλn. AλnT will exist if sliding the cells of T into a skew

tableau of shape λ/(n) (the cells in λ/λ(T ) must be filled from left to right) moves the

m 1s in the skew tableau only to the right. Because JdT sliding paths do not cross we

note that we need only check that filling the leftmost cell of λ/λ(T ) by playing Jeu de

Taquin on T moves the 1s in T to the right.

Example 1.11.2. A
(5,4,2)
2

5 6

2 2 4

1 1 1 3

does not exist because playing JdT on the tableau

to create a skew tableau of shape (5, 4, 2)/(2) yields

5 6

2 2 4 •
1 1 1 3 •

−→
5 6

1 2 2 4

1 1 3

and the 1s in the tableau did not move only to the right in this operation.
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Example 1.11.3. To find the action of A
(9,7,4,2)
4 on the tableau

4 5

3 4 6 7

2 2 2 5 8

1 1 1 3 6 7 8

first play JdT on the tableau to change it to skew shape (9, 7, 4, 2)/(4).

4 5

3 4 6 7

2 2 2 5 8 • •
1 1 1 3 6 7 8 • •

−→

4 5

3 4 6 7

2 2 2 5 6 8 8

1 1 1 3 7

so then

A
(9,7,4,2)
4

4 5

3 4 6 7

2 2 2 5 8

1 1 1 3 6 7 8

=

4 5

3 4 6 7

2 2 2 5 6 8 8

1 1 1 1 1 1 1 3 7

Notice that reversing these operations is the same as applying K4 to the last tableau.

1.12 Raising the content of a tableau

Form a tableau by changing all the 1’s in T to 2’s, all the 2’s in T to 3’s, etc.

Denote this type of change to the content by (T ↑). Place the resulting tableau on a row

of m 1’s (where m ≥ λ(T )1) to make a tableau, SmT , of shape λ(SmT ) = (m,λ(T )) and

content µ(SmT ) = (m,µ(T )).

SmT will have charge equal to the charge of T . This follows simply because each

standard subword wi of R(T ) corresponds to a standard subword of R(SmT ), (wi ↑)1.

The definition of charge gives that c(wi) = c((wi ↑)1). The other standard subwords of

R(SmT ) will be just 1 and have charge 0. The cocharge of SmT will be |T | higher than

the cocharge of T because n(µ(SmT )) = n(m,µ) = |T |+ n(µ(T )).

This procedure will be one of the steps for creating tableaux of content (m,µ)

from the tableaux of content µ.

Example 1.12.1. Start with the tableau T =
2 3

1 1 2
with charge 2 and cocharge 2. If
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we let m = 3 then the corresponding tableau SmT is

3 4

2 2 3

1 1 1

This tableau has charge 2 and cocharge 7.

There is also a way of raising the content by adding 1’s without changing the

cocharge and increasing the charge only. Again create a tableau (T ↑) by changing the

1s in T to 2s, 2s to 3s, etc. Next, slide the cells in the first row to the right by m

spaces and fill the space with 1s. This produces a new tableau RmT that is of shape

λ(RmT ) = (m+ λ1, λ2, . . . , λl(λ)) and has content µ(RmT ) = (m,µ(T )).

RmT will have cocharge equal to the cocharge of T because the charge will

increase by |T |. Tracing the algorithm of charge it is easy to see that c(RmT ) = c(T )+|T |.
Again, because of the relationship that c(RmT )+co(RmT ) = n(µ(RmT )) = n(µ)+|T | =
c(T ) + co(T ) + |T |, then it must be that co(RmT ) = co(T )

Example 1.12.2. Start with the tableau T =
2 3

1 1 2
with charge 2 and cocharge 2. If

we let m = 3 then the corresponding tableau RmT is

3 4

1 1 1 2 2 3

This tableau has charge 7 and cocharge 2.



Chapter 2

Symmetric Functions

2.1 Symmetric functions

The symmetric polynomials of Sn, denoted by Γn is a subring of Q[x1, x2, . . . xn]

consisting of those polynomials that are invariant when the elements of the symmetric

group Sn act on the polynomial by permuting the variables, that is P (x1, x2, . . . , xn) is

a symmetric polynomial iff P (x1, x2, . . . , xn) = P (xσ(1), xσ(2), . . . , xσ(n)) for all σ ∈ Sn.

For m ≥ n there is a natural embedding of Γm into Γn by setting the variables

xn+1, . . . , xm to 0. The number of variables in a symmetric function is usually irrelevant,

just that it is large enough for the formulas that are used. It is convenient to work with

symmetric polynomials in an infinite number of variables, but these objects are no longer

polynomials, but formal infinite sums of monomials.

Here we will consider the ring of symmetric functions in an infinite number of

variables as a subring of Q[x1, x2, . . .]. A more precise construction of this ring can be

found in [M] section I.2.

2.2 Plethystic notation

We make use of plethystic notation for symmetric functions here. This is a

notational device for expressing the substitution of the monomials of one expression,

E = E(t1, t2, t3, . . .) for the variables of a symmetric function, P . The result will be

denoted by P [E] and represents the expression found by expanding P in terms of the

26
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power symmetric functions and then substituting for pk the expression E(tk1, t
k
2, t

k
3, . . .).

More precisely, if the power sum expansion of the symmetric function P is given

by

P =
∑
λ

cλpλ

then the P [E] is given by the formula

P [E] =
∑
λ

cλpλ

∣∣∣
pk→E(tk1 ,t

k
2 ,t

k
3 ,...)

.

To express a symmetric function in a single set of variables x1, x2, . . . , xn, let

Xn = x1 + x2 + · · · + xn. The expression P [Xn] represents the symmetric function P

evaluated at the variables x1, x2, . . . , xn since

P (x1, x2, . . . , xn) =
∑
λ

cλpλ

∣∣∣
pk→xk1+xk2+···+xkn

= P [Xn]

The Cauchy kernel is a ubiquitous formula in the theory of symmetric functions

(especially when working with plethystic notation). We introduce it here and state a

few of its properties since they will be used in most of the symmetric function identities

further on.

Definition 2.2.1. The Cauchy kernel

Ω[X] =
∏
i

1

1− xi

It follows using plethystic notation that Ω[X]Ω[Y ] = Ω[X + Y ] and Ω[−X] =∏
i(1− xi).

2.3 The classical bases- pλ, sλ, eλ, hλ, mλ and the Pieri rule

The following definitions of symmetric functions are standard and may be found

in any text on the subject of symmetric functions.

The monomial symmetric function indexed by a partition λ will be denoted by

mλ is given by the formula

mλ[X] =
∑
α

xα
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summed over α that are distinct rearrangements of the partition λ.

For each k there is the kth power symmetric function given by the formula

pk[X] =
∑
i≥0

xki

For each partition λ we set the power symmetric function indexed by λ to be pλ =

pλ1pλ2 · · · pλl(λ) .
For each k ≥ 0 there exists the kth homogeneous symmetric function is given

by the formula

hk[X] =
∑

i1≤i2≤···≤ik

xi1xi2 · · ·xik =
∏
i≥0

1

(1− xit)

∣∣∣
tk

Again for each partition we set the homogeneous symmetric function indexed by λ to be

the product hλ = hλ1hλ2 · · ·hλl(λ) and hence hλ is given by the formula

hλ[X] =

l(λ)∏
k=1

∏
i≥0

1

1− xizk

∣∣∣
z
λ1
1 z

λ2
2 ...z

λl(λ)
l(λ)

= Ω[XZ]
∣∣∣
z
λ1
1 z

λ2
2 ...z

λl(λ)
l(λ)

There also exists the kth elementary symmetric function given by the formula

ek[X] =
∑

i1<i2<···<ik

xi1xi2 · · ·xik =
∏
i≥0

(1 + xit)
∣∣∣
tk

Again we set for each partition λ, the elementary symmetric function indexed by λ is

the product eλ = eλ1eλ2 · · · eλl(λ)
The Schur function indexed by a partition λ in a finite number of variables is

usually given by the ratio of two alternating polynomials. Let

ap(x1, . . . , xn) = det(xpij ) =
∑
σ∈Sn

ε(σ)x
pσ(1)
1 x

pσ(2)
2 · · ·xpσ(n)n

This is an alternating polynomial that = 0 if pi = pj for some i 6= j. When p = δ =

(n − 1, n − 2, . . . , 1, 0) then aδ(x1, . . . , xn) = det(xn−ij ) =
∏
i<j(xi − xj) is called the

Vandermonde determinant. For any partition λ, define the Schur polynomial to be the

ratio

aλ+δ(x1, . . . , xn)/aδ(x1, . . . , xn)

Here we wish to define the Schur symmetric function in a countable set of

variables so that the similarities to the homogeneous and Hall-Littlwood symmetric

functions are clearer. We will use the following definition
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Definition 2.3.1. The Schur symmetric functions

sλ[X] = Ω[XZ]
∏

1≤i<j≤k
1− zj/zi

∣∣∣
Zλ

where Zλ = zλ11 zλ22 . . . zλkk .

The Cauchy kernel evaluated at the product of two sets of variables has the

formula ([M] p 63)

Ω[XY ] =
∏
i,j

1

1− xiyj
=
∑
λ

sλ[X]sλ[Y ] =
∑
λ

hλ[X]mλ[Y ]

There exists combinatorial rules for computing the products of Schur functions

with elementary and homogeneous symmetric functions with only one part. The Pieri

formula ([M] p 73) for the product of hm[X] and sλ[X] is given by

hm[X]sλ[X] =
∑

µ/λ∈Hm

sµ[X] (2.1)

and the rule for the product of em[X] and sλ[X] is given by

em[X]sλ[X] =
∑

µ/λ∈Vm

sµ[X] (2.2)

Example 2.3.1. λ = = (2, 2, 1)

· · ·

·
·
· · ·

h2[X]s(2,2,1)[X] = s(2,2,2,1)[X] + s(3,2,1,1)[X] + s(3,2,2)[X] + s(4,2,1)[X]

··
·
·

·

·

· ·
··

e2[X]s(2,2,1)[X] = s(3,3,1)[X] + s(3,2,2)[X] + s(3,2,1,1)[X] + s(2,2,2,1)[X] + s(2,2,1,1,1)[X]

There exists operators h⊥m and e⊥m which are ’dual’ to multiplication by the cor-

responding symmetric function. Instead of introducing the inner product space structure

on the symmetric functions, here we define these two operators by their action on the

Schur function basis and give their combinatorial definition.
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Definition 2.3.2. The dual homogeneous operator

h⊥msλ[X] =
∑

µ:λ/µ∈Hm

sµ[X]

Definition 2.3.3. The dual elementary operator

e⊥msλ[X] =
∑

µ:λ/µ∈Vm

sµ[X]

Sometimes these operators will be expressed with an X (for example, eX⊥j ) to

make clear that they are acting on the symmetric functions in the X set of variables

only, but when it is clear which symmetric functions are relevant the X will be left off.

The expression Ω[XY ] is sometimes called a reproducing kernel because of the

following property

Lemma 2.3.1.

eX⊥j Ω[XZ] = ej [Z]Ω[XZ]

hX⊥j Ω[XZ] = hj [Z]Ω[XZ]

Proof. (Outline) These identities follow from the identity that Ω[XZ] =
∑

λ sλ[X]sλ[Z]

then use the Pieri formulas (2.1) (2.2) and the combinatorial definition of eX⊥j and hX⊥j

(def 2.3.2) (def 2.3.3) and equate coefficients of sλ[X] on both sides of the equation.

2.4 The Schur function vertex operator and combinatorial

action

We are interested in vertex operators for symmetric functions, that is, opera-

tors which add a row (or a column) to a partition which indexes the symmetric function.

The vertex operator that adds a row of size m to the homogeneous and elementary sym-

metric functions is just multiplication by the mth homogeneous or elementary symmetric

function. Multiplication by hm can be written to give a formula of a vertex operator

flavor:

hmhλ[X] = h(m,λ)[X]
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We wish to understand vertex operators by looking at their action on the Schur

function basis. The action of the ”homogeneous” (and ”elementary”) vertex operator

on the Schur function basis is the well known Pieri formula. There exists other vertex

operators, and in this section we would like to examine the vertex operator for the Schur

function basis. This operator was introduced by J. N. Bernstein (see [Z] p. 69 or [M] p.

96) and for m ≥ 0 is given by the following formula

Sm =
∑
i≥0

hm+i[X]e⊥i (−1)i

This operator may also be expressed plethystically by the formula

SmP [X] = P

[
X − 1

z

]
Ω[zX]

∣∣∣
zm

and it has the property that if m ≥ λ1 then

Smsλ[X] = s(m,λ)[X] (2.3)

This property follows easily from the definition of the Schur symmetric function

and the plethystic notation of the operator Sm, since

Smsλ[X] = SmΩ[XZ]
∏

1≤i<j≤k
1− zj/zi

∣∣∣
Zλ

(2.4)

= Ω

[(
X − 1

zo

)
Z

]
Ω[zoX]

∣∣∣
zmo

∏
1≤i<j≤k

1− zj/zi
∣∣∣
Zλ

(2.5)

= Ω[X(zo + Z)]
k∏
j=1

(1− zj/zo)
∏

1≤i<j≤k
1− zj/zi

∣∣∣
zmo Z

λ
(2.6)

= Ω[X(zo + Z)]
∏

0≤i<j≤k
1− zj/zi

∣∣∣
zmo Z

λ
= s(m,λ)[X] (2.7)

The generating function for the Schur function vertex operator will be denoted

by S(z) and it may be expressed by

S(z)P [X] =
∑
m

zmSmP [X] = P

[
X − 1

z

]
Ω[zX]
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Notice that on a symmetric function P [X] we have that

S(z1)S(z2)P [X] = S(z1)P

[
X − 1

z2

]
Ω[z2X]

= P

[
X − 1

z1
− 1

z2

]
Ω

[
z2

(
X − 1

z1

)]
Ω[z1X]

= P

[
X − 1

z1
− 1

z2

]
Ω[z2X]Ω[z1X](1− z2/z1)

=
1− z2/z1
1− z1/z2

S(z2)S(z1)P [X]

= −z2
z1

S(z2)S(z1)P [X]

By equating coefficients of zm1 z
n
2 in this formula we have that

SmSn = −Sn−1Sm+1 (2.8)

and by setting n = m+ 1 we see also that SmSm+1 = 0.

This commutation relation gives us the following proposition using the notation

introduced in chapter 1:

Proposition 2.4.1. Let m be a non-negative integer and λ a partition of n. Choose k

such that m+ k ≥ λ1, then

Smsλ[X] = (−1)htk((m+k,λ))−1s(m+k,λ)ck [X]

and Smsλ[X] = 0 if removing the k-snake from (m+ k, λ) does not leave a partition.

Example 2.4.1.

S2s(4,2,1)[X] = −s(3,3,2,1)[X] ××
using k = 2

S1s(4,2,1)[X] = −s(3,2,2,1)[X] ×××××
using k = 5

Proof. By the definition, (m+ k, λ)ck = (λ1 − 1, λ2 − 1, . . . , λh−1 − 1, (m+ k)− k + h−
1, λh, . . . λl(λ)) where h is the height of the k-snake in (m+k, λ). By the property 2.3 we
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have that Smsλ[X] = SmSλ1Sλ2 · · ·Sλl(λ)1. Apply the relation 2.8 then there will exist

an h′ such that either m+ h′ = λh′ or m+ h′ − 1 ≥ λh′ and

Smsλ[X] = (−1)h
′−1Sλ1−1Sλ2−1 · · ·Sλh′−1−1Sm+h′−1Sλh′ · · ·Sλl(λ)1 (2.9)

Now if m + h′ = λh′ then Smsλ[X] = 0 since Sm+h′−1Sλh′ = 0. Adding a k-snake of

height h′ to (λ1− 1, λ2− 1, · · · , λh′−1− 1,m+h′− 1, λh′ , · · · , λl(λ)) yields (m+ k, λ) and

so it must be that h = h′ and Smsλ[X] = (−1)htk(λ)−1s(m+k,λ)ck [X].

This proposition gives a combinatorial method for finding the action of the

Schur function vertex operator when m is less than λ1. When m ≥ λ1, Sm simply adds

a row of length m to the Schur function sλ[X].

There is also an operator S̃m which adds a column of length m to a Schur

function. S̃m = ωSmω where the involution ω sends sλ[X] → sλ′ [X]. The involution

ω also transforms the elementary symmetric functions to the homogeneous symmetric

functions so S̃m is given by the formula

S̃m =
∑
i≥0

em+i[X]h⊥i (−1)i

For m ≥ 0 the formula can be given in plethystic notation as

S̃mP [X] = (−1)mP

[
X +

1

z

]
Ω[−zX]

∣∣∣
zm

The combinatorial action of S̃m on a Schur function is going to be the transpose

of the rule given in proposition 2.4.1.

Before we leave this section we note that the vertex operator for the power sym-

metric function is just multiplication by mth power symmetric function. This operation

also has a well known combinatorial rule for computing the action on the Schur symmet-

ric functions. The rule is called the Murnaghan-Nakayama rule (sometimes nicknamed

the ”slinky” rule). See [M] p. 48 for the combinatorial action, but we note that it has

some similarities to the ”snake” rule of proposition 2.4.1.

2.5 The Hall-Littlewood basis

The Hall-Littlewood symmetric functions Hµ[X; t] can be defined by the fol-

lowing formula.
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Definition 2.5.1. The Hall-Littlewood symmetric function

Hµ[X; t] = Ω[XZ]
∏

1≤i≤j≤k

1− zj/zi
1− tzj/zi

∣∣∣
Zµ

where µ is a partition.

These symmetric functions are not the same, but are related to the symmetric

functions referred to as Hall-Littlewood polynomials in [M] p. 208. The Hall-Littlewood

functions are related to the Schur symmetric functions by letting t → 0 and to the

homogeneous symmetric functions by letting t→ 1.

The Hall-Littlewood functions can be expanded in terms of the Schur symmetric

function basis with coefficients Kλµ(t), that is, Hλ[X; t] =
∑

λKλµ(t)sµ[X]. The Kλµ(t)

are well studied and referred to as the Kostka-Foulkes coefficients. They are known to

be polynomials in t with positive integer coefficients [Fo].

Kλµ(0) = 1 if λ = µ, and Kλµ(0) = 0 otherwise. Kλµ(1) = Kλµ = the number

of column strict tableau of shape λ and content µ. The numbers Kλµ are referred to as

the Kostka numbers. The Kλµ(t) are a t counting of the column strict tableau of shape

λ and content µ. It was conjectured by Foulkes that there should be a statistic such that

Kλµ(t) =
∑

T∈CSTµλ

tc(T ) (2.10)

This conjecture was answered by Lascoux and Schützenberger [LS1] and the statistic on

the column strict tableau that they introduced was the charge of the tableau.

Example 2.5.1. λ = (3, 2, 1), µ = (2, 2, 1, 1)

4

2 2

1 1 3

3

2 4

1 1 2

3

2 2

1 1 4

4

2 3

1 1 2
charge = 2 2 1 3

K(3,2,1)(2,2,1,1)(t) = t2 + t2 + t1 + t3

The vertex operator for the Hµ[X; t] is given by the following formula.
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Definition 2.5.2. The Hall-Littlewood vertex operator for m ≥ 0

Hm =
∑
i,j≥0

hm+i+j [X](−1)itje⊥i h
⊥
j =

∑
j≥0

Sm+jh
⊥
j t
j

This definition may seem like it contains an infinite sum but notice that for

sufficiently large values of i and j (i+ j > deg(P ) is enough) e⊥i h
⊥
j P [X] = 0.

Note that the Hm operator also has a definition in terms of plethystic notation.

HmP [X] = P

[
X − 1− t

z

]
Ω[zX]

∣∣∣
zm

(2.11)

The generating function for the Hall-Littlewood vertex operator will be denoted

by H(z) and is given by its action on an arbitrary symmetric function P [X] by

H(z)P [X] =
∑
m

zmHmP [X] (2.12)

= P

[
X − 1− t

z

]
Ω[zX] (2.13)

We state and give a proof of the vertex operator property of the Hm operator.

Proposition 2.5.1. For m ≥ µ1 we have that

HmHµ[X; t] = H(m,µ)[X; t]

where the notation (m,µ) represents the partition (m,µ1, . . . , µk).

Proof. Using the definitions of Hµ[X; t] and Hm in a analogous manner to the Schur

function vertex operator property we have that

HmHµ[X; t] = Hm

 ∏
1≤i≤j≤k

1− zj/zi
1− tzj/zi

Ω[XZ]
∣∣∣
Zµ


=

∏
1≤i≤j≤k

1− zj/zi
1− tzj/zi

Ω

[(
X − 1− t

zo

)
Z

] ∣∣∣
Zµ

Ω[zoX]
∣∣∣
zmo

=
∏

1≤i≤j≤k

1− zj/zi
1− tzj/zi

Ω[XZ]Ω[−Z/zo]Ω[tZ/zo]Ω[zoX]
∣∣∣
Zµ

∣∣∣
zmo
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=
∏

1≤i≤j≤k

1− zj/zi
1− tzj/zi

Ω[X(zo + Z)]
k∏
j=1

1− zj/zo
1− tzj/zo

∣∣∣
Zµ

∣∣∣
zmo

=
∏

0≤i≤j≤k

1− zj/zi
1− tzj/zi

Ω[X(zo + Z)]
∣∣∣
zmo Z

µ

= H(m,µ)[X; t]

If t → 1, then the vertex operator Hm

∣∣∣
t→1

tends to multiplication by hm[X].

If t→ 0, then the vertex operator Hm

∣∣∣
t→0

tends to the Schur function vertex operator.

The action of Hm on the Schur function basis is therefore a generalization of both the

Pieri rule for multiplication by hm[X] and the Schur function vertex operator.

The Hm operator also has a commutation relation similar to the one for the

Schur function vertex operator Sm. When the expression H(z1)H(z2) is applied to an

arbitrary symmetric function P [X] we have that

H(z1)H(z2)P [X] = H(z1)P

[
X − 1− t

z2

]
Ω[z2X]

= P

[
X − 1− t

z1
− 1− t

z2

]
Ω

[
z2

(
X − 1− t

z1

)]
Ω[z1X]

= P

[
X − 1− t

z1
− 1− t

z2

]
Ω[z1X]Ω[z2X]

1− z2/z1
1− tz2/z1

=
1− z2/z1
1− tz2/z1

1− tz1/z2
1− z1/z2

H(z2)H(z1)P [X]

=
tz1 − z2
z1 − tz2

H(z2)H(z1)P [X]

Taking coefficients of zm+1
1 zn2 on both sides of the equation

(z1 − tz2)H(z1)H(z2)P [X] = (tz1 − z2)H(z2)H(z1)P [X]

gives the relation

HmHn − tHm+1Hn−1 = tHnHm −Hn−1Hm+1 (2.14)

In particular, when n = m+ 1 we have HmHm+1 = tHm+1Hm.
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2.6 The combinatorial interpretation of Hµ[X; t], sλ[X], and

Hm

It has been mentioned already that by a theorem of Lascoux and Schützenberger,

the Kλµ(t) are a generating function for the column strict tableau of shape λ and content

µ. These coefficients are polynomials with one term for each of the elements of CSTµλ

and each term keeps track of the charge of a tableau.

Since the coefficients of the expansion of Hµ[X; t] in terms of the Schur functions

are Kλµ(t) then by equation (2.10) we have that

Hµ[X; t] =
∑

T∈CSTµ
tc(T )sλ(T )[X] (2.15)

where c(T ) is the charge of the column strict tableau and λ(T ) is the shape.

This equation suggests that the polynomials Hµ[X; t] can be thought of as a

generating function for the column strict tableaux of content µ. The Schur functions in

this equation represent a placeholder for the shape of the column strict tableau, and the

t exponent keeps track of the charge.

This also gives an interpretation of the operator Hm since it has the property

that HmHµ[X; t] = H(m,µ)[X; t], it is an operator that changes the generating function

for column strict tableaux of content µ to the generating function for column strict

tableaux of content (m,µ). The action of Hm on a single term tdsλ[X] when expanded

again in terms of Schur functions represents the effect on a single tableau of shape λ and

charge d of raising the content by a row of length m.

The operator can be programmed fairly easily in Maple using the symmetric

function package written by John Stembridge. The first observation to make when

looking at Hm acting on the Schur functions is that the coefficients are all of the form

ta, ta − tb, or 0.

Example 2.6.1. The action of H1 on a Schur function s(4,2,1)[X]

H1s(4,2,1)[X] =t4s(5,2,1) + t3s(4,3,1) + t3s(4,2,2) + t3s(4,2,1,1)+(
t2 − t

)
s(3,3,2) +

(
t2 − t

)
s(3,3,1,1) +

(
t2 − 1

)
s(3,2,2,1)
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The fact that there are negative coefficients in the expansion Hmsλ[X] is not

the most ideal combinatorial situation. One would hope that the operation that raises

the content of a tableau produces another set of tableaux and Hmsλ[X] would be the

sum over the weights of those. We will show in the next chapter that the operator that

acts on tableaux and raises the content from µ to (m,µ) can be realized to actually give

a proof of equation (2.15).

2.7 The Hm operator on the Schur functions

It was noted that when t→ 1 that the operator Hm → multiplication by hm[X],

and as t → 0 the operator Hm → Sm. The combinatorial action of Hm on the Schur

functions will therefore be a generalization of the Pieri rule and of the ”snake” rule of

Proposition 2.4.1.

The following proposition describes the combinatorial rule for computing the

action of Hm on the Schur functions.

Proposition 2.7.1. Let λ be a partition of n, let m be a non-negative integer and let k

be any non-negative integer such that m+ k ≥ λ1, then

Hmsλ[X] =
∑

µ/λ∈Hm+k

(−1)htk(µ)−1t|λ/µ
r|sµck [X]

with the understanding that if µck is not defined then there is no contribution from that

term.

The LHS of Proposition 2.7.1 is independent of the choice of k, the RHS is also,

but less obviously so.

Example 2.7.1. The action of H1 on s(4,2,1)[X] using k = 3

· · · ·
· · · ·

· ·
· ·

·
· · ·

·
· · ·

H1s(4,2,1)[X] = −s(3,2,2,1)[X] + 0 + t2s(3,2,2,1)[X]− ts(3,3,1,1)[X] + t2s(3,3,1,1)[X]

·

· · ·
· · · ·

· · · ·
·
· · ·
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+t3s(4,2,1,1)[X]− ts(3,3,2)[X] + t2s(3,3,2)[X] + t3s(4,2,2)[X]

· · · · · · · · · · · ·
+0 + t3s(4,3,1)[X] + t4s(5,2,1)[X]

Proof. Recall that one expression for the Hall-Littlewood vertex operator is

Hm =
∑
i≥0

Sm+ih
⊥
i t
i

Using the result of Proposition 2.4.1 we have

Hmsλ[X] =
∑
i≥0

tiSm+ih
⊥
i sλ[X] (2.16)

=
∑
i≥0

ti
∑

ρ:λ/ρ∈Hi

Sm+isρ[X] (2.17)

=
∑
i≥0

ti
∑

ρ:λ/ρ∈Hi

s(m+i+k,ρ)ck [X](−1)htk((m+i+k,ρ))−1 (2.18)

As always, the equation holds with the understanding that s(m+i+k,ρ)ck [X] = 0

if removing the k-snake does not leave a partition.

Since λ/ρ is a horizontal strip of size i, then (m+k+ i, ρ)/λ will be a horizontal

strip also, but of size m+ k. Therefore equation (2.18) becomes

Hmsλ[X] =
∑
i≥0

ti
∑

(m+i+k,ρ)/λ∈Hm+k

s(m+i+k,ρ)ck [X](−1)htk((m+i+k,ρ))−1 (2.19)

=
∑
i≥0

ti
∑
µ

sµck [X](−1)htk(µ)−1 (2.20)

Where the last sum is over all µ such that µ/λ ∈ Hm+k and µ1 = m + k + i.

Since |µ| − |λ| = m+ k then |λ/µr| = |λ| − |µr| = |λ| − (|µ| − (m+ k+ i)) = i. Therefore

equation (2.20) can be rewritten as

Hmsλ[X] =
∑

µ/λ∈Hm+k

t|λ/µ
r|sµck [X](−1)htk(µ)−1 (2.21)
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2.8 The commutation relation of Hm and Γ1k

The operator e⊥k is of interest because of it’s relation with the operator Hm. To

be consistent with other papers written on the subject we will rename the operator Γ1k

(see [GP], [G]).

The action of Γ1k on the Schur functions is given by its Pieri formula defini-

tion 2.3.3. When Γ1k acts on a Schur function sλ[X] it produces a sum over all Schur

functions indexed by partitions ρ that differ from λ by a vertical k-strip. The Schur

function sλ[X] represents a place holder for the shape of a tableau in the formula (2.15).

The operator Γ1k can be recognized as an operator that removes all possible vertical

strips of size k from the shape of the tableau, but does not change the charge (since the

t coefficient multiplied by the Schur function remains the same).

A generating function for this operator can be expressed plethystically by the

formula

ΓΓ(u)P [X] =
∑
k≥0

(−u)kΓ1kP [X] = P [X − u]

Notice that we have

ΓΓ(u)H(z)P [X] = ΓΓ(u)P

[
X − 1− t

z

]
Ω[zX]

= P

[
X − u− 1− t

z

]
Ω[z(X − u)]

= (1− uz)H(z)ΓΓ(u)P [X]

By equating coefficients of ukzm on both sides of this result we have that

Γ1kHm = HmΓ1k +Hm−1Γ1k−1 (2.22)

From this identity we derive the following formula

Γ1kHµ[X; t] =
∑

I⊂{1..l(µ)}

Hµ1−χ(1∈I)Hµ2−χ(2∈I) · · ·Hµl(µ)−χ(l(µ)∈I)1 (2.23)
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where the sum is over subsets I of size k and the function χ(B) is 1 if B is true

and 0 if B is false. Recall that there is a simple commutation relation for Hm and Hm+1,

namely HmHm+1 = tHm+1Hm, therefore the right hand side of the equation is the sum

over Hall-Littlewood symmetric functions with t coefficients. The exponent for each t is

found by the number of operations required to straighten µ− I to a partition.

Example 2.8.1. The operator Γ1 acting on the Hall-Littlewood symmetric function

H(2,2,2,1)[X; t]

Γ1H(2,2,2,1)[X; t] = Γ1H2H2H2H11

= H1H2H2H11 +H2H1H2H11 +H2H2H1H11 +H2H2H2H01

= (t2 + t+ 1)H(2,2,1,1)[X; t] +H(2,2,2)[X; t]

Let µ(I) be the tuple (µ1−χ(1 ∈ I), µ2 − χ(2 ∈ I) · · · , µl(µ) − χ(l(µ) ∈ I)) after

it is rearranged so the result is a partition. Also we define K̃λµ(t) = Kλµ(1/t)tn(µ).

Because co(T ) = n(µ) − c(T ), it must be that the K̃λµ(t) are also generating functions

for the column strict tableau of of shape λ and content µ with cocharge as the statistic.

That is,

K̃λµ(t) =
∑

T∈CSTµλ

tco(T )

Garsia and Procesi show in [GP] that by equating coefficients of sρ[X] on both

sides of equation (2.23) and then performing some simplification on the resulting formula

then it reduces to

∑
λ/ρ∈Vk

K̃λµ(t) =
∑

I⊂{1,...,l(µ)}
|I|=k

t
∑
i∈I(i−1)K̃ρµ(I)(t) (2.24)

A bijective proof of this equation was the original motivation for the author’s

interest in this area of algebraic combinatorics.



Chapter 3

More Tableau Operators

3.1 The operator Hρ
m

Let T be a tableau of shape λ and let ρ be a partition such that ρ/λ ∈ Hm+n

where n = |λ|. Define Hρ
mT by the following procedure

1. Form a tableau by changing all the 1’s in T to 2’s, all the 2’s in T to 3’s, etc. Denote

this type of change to the content by T ↑. Place the resulting tableau on a row of

m+ n 1’s to make a tableau, Sm+nT , of shape λ(Sm+nT ) = (m+ n, λ(T )) and content

µ(Sm+nT ) = (m+ n, µ(T )).

2. Sm+nT is transformed into a tableau of shape ρ by performing cyclage operations

until it is of the correct shape. Consider the cells corresponding to λ(Sm+nT )r/ρr, if

these are removed and placed in the first row of the shape then the tableau would be

of shape ρ. Perform one cyclage operation for each one of these cells, starting from the

right and working to the left. The bumping path of column evacuation of these cells will

never cross and this guarantees that the cells will end up in the first row when they are

inserted. Call the resulting tableau T ρ = Hρ
mT .

Sm+nT will have charge equal to the charge of T . This follows by remarks made

in the previous chapter.

The shape of λ(T ρ) will be ρ. The number of cyclage operations performed is

|λ(Sm+nT )r/ρr| = |λ/ρr| therefore c(T ρ) = c(Sm+nT ) + |λ/ρr| = c(T ) + |λ/ρr|.

42
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Example 3.1.1. Let ρ = (11, 2, 2, 1). To calculated the action of Hρ
2 on the tableau

T =
4 5

2 3

1 1 2

first calculate the intermediate tableau

Sm+nT =

5 6

3 4

2 2 3

1 1 1 1 1 1 1 1 1

we need to perform a cyclage two times on Sm+nT to obtain a tableau of shape ρ.
×
× · ·

Then the resulting tableau is

H
(11,2,2,1)
2 T = T ρ =

6

3 4

2 3

1 1 1 1 1 1 1 1 1 2 5

The charge of T and Sm+nT is 4, the charge of T ρ = 6.

Example 3.1.2. Let ρ = (10, 3, 1). Calculate the action of Hρ
2 on the tableau T =

4

2 2

1 1 3

. Create a tableau Sm+nT of content (8, 2, 2, 1, 1) and shape (8, 3, 2, 1) as an

intermediate step, the charge of Sm+nT = 2 is the same as the charge of T .

Sm+nT =

5

3 3

2 2 4

1 1 1 1 1 1 1 1

Two cyclage operations must be done on Sm+nT to obtain

H
(10,3,1)
2 T = T ρ =

3

2 2 4

1 1 1 1 1 1 1 1 3 5

The charge of T ρ is 4.

Hρ
m is an invertible operator. Given any tableau, S, of content (m+ n, µ), it is

possible to determine a tableau, T ,of content µ such that H
λ(S)
m T = S, by reversing the

steps in this process.
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To recover T from S, first recognize all of the cells in the first row that are not 1

are cells to be uncyclaged. Perform one uncyclage operation on the first corner for every

cell in the first row that is not labeled with a 1. After these uncyclage operations, the

result will be a tableau with the first row consisting only of 1’s. The tableau T is found

by discarding the row of 1’s and changing 2’s to 1’s, 3’s to 2’s, etc. in the remainder.

Example 3.1.3. The tableau

S =
3 4

2 2 2 6

1 1 1 1 1 1 1 1 5

may be obtained from an application of H
(9,4,2)
1 to some tableau T . The 5 in the first

row must have been placed there from a cyclage operation, so uncyclaging the 5 yields

the tableau

5

3 4

2 2 2 6

1 1 1 1 1 1 1 1

and this is the Sm+nT that corresponds to the tableau

T =
4

2 3

1 1 1 5

therefore Hρ
1T = S.

Example 3.1.4. Let S =
3 4

2 2 2 3

1 1 1 1 1 1 1 1 1 1 2 5

be a tableau of content

µ(S) = (10, 4, 2, 1) and of shape λ(S) = (12, 4, 2). S is in the image of the operator

H
(12,4,2)
2 thus there is some tableau T such that H

(12,4,2)
2 T = S. Sm+nT can be found by

uncyclaging the 2 and the 5 from the first row to obtain

Sm+nT =

5

3 4

2 2 2 2 3

1 1 1 1 1 1 1 1 1 1

then T must be the tableau

T =
4

2 3

1 1 1 1 2
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Define the operator Hm to be an operator on a single tableau T that produces

a set of tableaux of content (m+ n, µ).

We let

HmT = {Hρ
mT}ρ/λ(T )∈Hm+n

Example 3.1.5. The operator H2 acting on all tableau of content (13), notice that all

tableau of content (5, 13) appear on the RHS exactly once.

H2 1 2 3 =
{

2 3 4
1 1 1 1 1

, 3 4
1 1 1 1 1 2

, 4
1 1 1 1 1 2 3

,
1 1 1 1 1 2 3 4

}

H2
3
1 2

=

{
4
2 3
1 1 1 1 1

, 2 3
1 1 1 1 1 4

,
4
3
1 1 1 1 1 2

, 3
1 1 1 1 1 2 4

}

H2
2
1 3

=

{
3
2 4
1 1 1 1 1

, 2 4
1 1 1 1 1 3

,
4
2
1 1 1 1 1 3

, 2
1 1 1 1 1 3 4

}

H2

3
2
1

=


4
3
2
1 1 1 1 1

, 3
2
1 1 1 1 1 4


3.2 A formula for H(m,µ)

The definition of Hm was chosen to mimic on tableaux the action that Hm

has on the Schur function basis. Define a weight function for the tableaux of content

(m+n, µ). Wn(T ) = 0 if λ(T ) does not have a n-snake and Wn(T ) = tc(T )(−1)htn(λ(T ))−1

sλ(T )cn [X] otherwise. By Proposition 2.7.1 we have that Hmt
c(T )sλ(T )[X] is given by

Hmt
c(T )sλ(T )[X] =

∑
ρ/λ(T )∈Hm+n

ρcnexists

tc(T )+|λ(T )/ρ
r|(−1)htn(ρ)−1sρcn [X]

=
∑

S∈HmT
λ(S)cnexists

tc(S)(−1)htn(λ(S))−1sλ(S)cn [X]

=
∑

S∈HmT

Wn(S)
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By the theorem of Lascoux and Schützenberger, we know that the polynomials

Hµ[X; t] are a generating function for all of the tableau of content µ, that is they satisfy

Hµ[X; t] =
∑

T∈CSTµ
tc(T )sλ(T )[X] (3.1)

Just by noting that Hm is an invertible operator we have also that

Theorem 3.2.1. Let µ ` n.

If Hµ[X; t] =
∑

T∈CSTµ t
c(T )sλ(T )[X], then

HmHµ[X; t] =
∑

T∈CST (m+n,µ)

Wn(T )

Example 3.2.1. H(13)[X; t] is the generating function for the tableaux of content (13)

1 2 3
3
1 2

2
1 3

3
2
1

H(13)[X; t] = t3s(3)[X] + t2s(2,1)[X] + ts(2,1)[X] + s(13)[X]

The image of all of the tableaux of content (13) is the set of tableaux of content (5, 13).

2 3 4
1 1 1 1 1

3 4
1 1 1 1 1 2

4
1 1 1 1 1 2 3 1 1 1 1 1 2 3 4

4
2 3
1 1 1 1 1

2 3
1 1 1 1 1 4

4
3
1 1 1 1 1 2

3
1 1 1 1 1 2 4

3
2 4
1 1 1 1 1

2 4
1 1 1 1 1 3

4
2
1 1 1 1 1 3

2
1 1 1 1 1 3 4

4
3
2
1 1 1 1 1

3
2
1 1 1 1 1 4
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When each of these tableau are counted with weight W3, we have an expression for the

symmetric function H1H(13)[X; t] = H(14)[X; t].

H1H(13)[X; t] =− t3s(2,2)[X] + t4s(2,2)[X] + t5s(3,1)[X] + t6s(4)[X]

+ 0 + t3s(2,2)[X] + t3s(2,1,1)[X] + t4s(3,1)[X]

+ 0 + t2s(2,2)[X] + t2s(2,1,1)[X] + t3s(3,1)[X]

+ t0s(1,1,1,1)[X] + t1s(2,1,1)[X]

3.3 Implication by induction that H(m,µ)[X; t] is a generat-

ing function

Theorem 3.2.1 says that H(m,µ)[X; t] is a weighted sum over column strict

tableaux of content (m+n, µ) with both positive and negative terms. By equation (3.1)

we also know that it is a weighted sum over column strict tableaux of content (m,µ)

with only positive terms. It should be that there is a direct correspondence with the

non-canceling terms of 3.2.1 with the column strict tableau of content (m,µ) and a sign

reversing involution on the remaining terms.

Let µ be a partition of n, let m be an integer larger than or equal to µ1, and let

T be a tableau of content of (m+n, µ). Then we shall say that T is naturally isomorphic

to T̃ , a tableau of content (m,µ), if the operation of deleting the first n 1’s in the first

row of T and sliding only the cells in the first row to the left yields T̃ . Because removing

the n cells from the first row of λ(T ) yields a partition then λ(T̃ ) = λ(T )cn and the

height of the n-snake is 1 therefore

Wn(T ) = W0(T̃ ) = tc(T̃ )sλ(T̃ )[X] (3.2)

.

Example 3.3.1. The tableau T =
3 5

2 2 4

1 1 1 1 1 1 1 1 1 6

is naturally isomorphic

to the tableau T̃ =
3 5

2 2 4

1 1 1 6

. The charge of both of these tableaux is 4.
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Example 3.3.2. The tableau T =
3 5

2 2 4

1 1 1 1 1 1 1 1 6

is not naturally isomorphic

to a tableau of content (2, 2, 1, 1, 1, 1) because deleting 6 of the 1’s and bringing the tableau

to straight shape changes more than just the cells in the first row.

In general, there are some tableaux of content (m+n, µ) that will not correspond

to a tableau of content (m,µ) ”naturally” (that is, it will be necessary to do more than

just slide the cells of the bottom row to the left). Recall that the operator Kn(T ) was

introduced to denote the tableau produced by deleting the first n cells labeled with 1s of

a tableau T of content (m+ n, µ) and then playing Jeu de Taquin to bring the tableau

to straight shape. Recall also that Kn does not change the charge if m ≥ µ1.
Let T be a tableau of content (m + n, µ). Assume that T is not naturally

isomorphic to a tableau of content (m,µ) and also assume that λ(T ) has an n-snake.

The claim is that there is an involution In producing a tableau S = In(T ) of content

(m+n, µ) such thatKn(S) = Kn(T ) and λ(S)cn = λ(T )cn and htn(λ(S)) = htn(λ(T ))±1

so that Wn(S) = −Wn(T ).

Proof. (of claim) Let T be a column strict tableau of content (m + n, µ) that is not

naturally isomorphic to a tableau of content (m,µ) and such that λ(T ) has an n-snake.

Let ρ = λ(Kn(T )) and λ = λ(T )cn and h = htn(λ(T )). Define λ̃ to be the partition

obtained by adding an n-snake of height h+ 1 to λ if ρh > λh and the partition obtained

by adding an n-snake of height h− 1 to λ if ρh ≤ λh.

The image of the involution In(T ) is then defined to be the tableau of content

(m + n, µ) of shape λ̃ such that Kn(In(T )) = Kn(T ). That is, let In(T ) = Aλ̃n(Kn(T ))

(Aλ̃n(Kn(T )) will exist because the leftmost cell of λ̃/λ(Kn(T )) is the same as the leftmost

cell of λ(T )/λ(Kn(T )), since A
λ(T )
n (Kn(T )) exists then so must Aλ̃n(Kn(T ))).

If ρh > λh then ρh+1 = λ(Kn(T ))h+1 ≤ λ(T )h+1 ≤ λh+1 so that ρh+1 ≤ λh+1.

Also if ρh ≤ λh then ρh−1 = λ(Kn(T ))h−1 ≥ λ(T )h > λ(T )h − 1 = λh−1 so that

ρh−1 > λh−1. These two statements together show that In is an involution.

In is not defined if h = 1 and ρ1 ≤ λ1, but in this case ρ = λ and T is naturally

isomorphic to Kn(T ).
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Example 3.3.3. Consider the tableau T =
2 3 4

1 1 1 1
that is an element of the image

of H1 acting on the tableau of content (1, 1, 1). T is not naturally isomorphic to a tableau

of content (14). Instead we have K3(T ) =
2

1 3 4
and ρ = (3, 1). W3(T ) = −t3s(2,2)[X]

and λ = λ(T )c3 = (2, 2). Because ρ2 < λ2 then λ̃ = λ+ a 3-snake of height 1. There

will be a corresponding tableau of shape λ̃ = (5, 2). The tableau is found by computing

I3(T ) = A
(5,2)
3 (K3(T )) =

2 3

1 1 1 1 4
. The weight of I3(T ) is of opposite sign of the

weight as T since the height of the 3-snake of I3(T ) is one less than the height of the

3-snake of T . W3(I3(T )) = t3s(2,2)[X].

The existence of this involution on the tableaux of content (m+n, µ) that have

an n-snake and are not naturally isomorphic to a tableaux of content (m,µ) shows that

the sum ∑
T∈CST (m+n,µ)

Wn(T ) =
∑

T∈CST (m,µ)

W0(T ) (3.3)

The proof of (3.1) now follows by induction on the number of parts of µ. For

assume that

Hµ[X; t] =
∑

T∈CSTµ
tc(T )sλ(T )[X]

for all partitions µ with less than or equal to k parts, then (m,µ) (with m ≥ µ1) is a

partition with k + 1 parts. By Theorem 3.2.1 and then applying (3.3) we have that

H(m,µ)[X; t] =
∑

T∈CST (m+n,µ)

Wn(T )

=
∑

T∈CST (m,µ)

W0(T )

=
∑

T∈CST (m,µ)

tc(T )sλ(T )[X]

Example 3.3.4. The tableaux of content (4, 1, 1, 1) fall into three categories. Two have

the property that W3(T ) = 0 because λ(T ) does not have a 3-snake:

3
2 4
1 1 1 1

4
2 3
1 1 1 1
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Two more have the property that they are images of each other under the involution

I3(T ) and so have weight that is the opposite sign:

2 3 4
1 1 1 1

←→ 2 3
1 1 1 1 4

The remaining 10 tableaux are naturally isomorphic to tableaux of content (14)

4
3
2
1 1 1 1

←→
4
3
2
1

3
2
1 1 1 1 4

←→ 3
2
1 4

4
2
1 1 1 1 3

←→
4
2
1 3

4
3
1 1 1 1 2

←→
4
3
1 2

3 4
1 1 1 1 2

←→ 3 4
1 2

2 4
1 1 1 1 3

←→ 2 4
1 3

4
1 1 1 1 2 3

←→ 4
1 2 3

3
1 1 1 1 2 4

←→ 3
1 2 4

2
1 1 1 1 3 4

←→ 2
1 3 4 1 1 1 1 2 3 4

←→
1 2 3 4

3.4 Building tableaux of non-partition content

If m < µ1 the proof that HmHµ[X; q, t] is a generating function for the column

strict tableaux of content (m,µ) does not work. The proof fails because if T is a tableau

of content (m + |µ|, µ) (where µ may be a composition and not just a partition), then

deleting the |µ| 1s to create a tableau of content (m,µ) will change the charge if m < µi.

Always in the proof in the previous section we assumed that m ≥ µ1 and so deleting

|µ| 1s from T does not change the charge and the involution has the property that

c(T ) = c(In(T )).

Example 3.4.1. H1H31 = t3s(4)[X] + t2s(3,1)[X] + (t− 1)s(2,2)[X]

H1 1 1 1
= 2 2 2

1 1 1 1
+ 2 2

1 1 1 1 2
+ 2

1 1 1 1 2 2
+

1 1 1 1 2 2 2

charge 0 0 1 2 3

In the example above, each tableau is counted with weight W3(T ). The first two tableaux

in H1 1 1 1 have the same image in the map K3 and they are images of each other in
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the involution I3. Let T1 = 2 2 2
1 1 1 1

and T2 = 2 2
1 1 1 1 2

, then the charge of K3(T1) =

K3(T2) does not equal the charge of either T1 or T2 and c(T1) = 0 and c(T2) = 1 the

involution I3 does not have the property that c(T ) = c(I3(T )).

In the previous chapter it was shown that

HmHn − tHm+1Hn−1 = tHnHm −Hn−1Hm+1 (3.4)

and in particular, when n = m+ 1 we have HmHm+1 = tHm+1Hm. This implies that if

p is a composition with the property that if i < j then pi ≥ pj − 1 then the symmetric

function Hp1Hp2 · · ·Hpl1 has positive coefficients when expanded in the Schur function

basis. In fact, it is a power of t times the Hall-Littlewood symmetric function indexed

by the rearrangement of the composition to a partition. In this section we would like to

show that this symmetric function is a generating function for the tableau of content p.

Example 3.4.2. Consider the symmetric function H2H3H11 = t5s(6)[X] +(
t3 + t4

)
s(5,1)[X] +

(
t2 + t3

)
s(4,2)[X] + t2s(4,1,1)[X] + t2s(3,3)[X] + ts(3,2,1)[X]

= tH(3,2,1)[X; t]

1 1 2 2 2 3
2
1 1 2 2 3

3
1 1 2 2 2

2 3
1 1 2 2

charge= 5 4 3 3

2 2
1 1 2 3

3
2
1 1 2 2

2 2 3
1 1 2

3
2 2
1 1 2

charge= 2 2 2 1

Let µ be a partition and so Hµ[X; t] is the generating function for all tableau

of content µ and let m be such that m ≥ µ1−1. We would like to show that HmHµ[X; t]

is the generating function for the tableau for content (m,µ) and the correspondence

defined in the previous section is the same. This statement has been shown in the

previous section if m ≥ µ1 but there is something to check if m = µ1 − 1 (if m < µ1 − 1

then the statement isn’t true).
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The tableau operator Hµ1−1 acting on all tableaux of content µ produces all

tableaux of content (µ1 − 1 + |µ|, µ) and the symmetric function

Hµ1−1Hµ[X; t] =
∑

T∈CST (µ1−1+|µ|,µ)

W|µ|(T )

is a generating function for these tableaux (where Wn(T ) is the weight function given

earlier in this chapter).

Let T be a tableau of content (µ1 − 1 + |µ|, µ) such that W|µ|(T ) is non-zero

and T does not correspond to a tableau of content (µ1 − 1, µ) naturally. The involution

I|µ| exists but we need to show that c(I|µ|(T )) = c(T ). This happens because K|µ|−1(T )

is a tableau of partition weight and has the same charge as T and I|µ|−1(T ) = I|µ|(T ).

Therefore c(T ) = c(I|µ|(T )) and so all tableaux of this type cancel.

If T is a tableau of content (µ1 − 1 + |µ|, µ) that does correspond to a tableau

K|µ|(T ) of content (µ1 − 1, µ) naturally, then c(T ) = c(K|µ|(T )). The proof of this

statement is not quite as obvious as it is for tableaux of partition content.

Proof. A cell labeled by 2 lies in the first row of T , otherwise T does not correspond to

K|µ|(T ) naturally. Let T̃ be the tableau with the first cell labeled by a 2 changed to a 1

and then delete |µ| 1s. This tableau will have charge c(T ) − 1 since deleting the extra

1s does not change the charge as long as there are more 1s than any other label and

the operation of changing a 2 to a 1 commutes with cyclage so it does not change the

cocharge and n(µ(T̃ )) = n(µ(T ))− 1.

Notice also that T̃ = (1, 2)K|µ|(T ) and since c((i, i + 1)T ) = c(T ) + µi − µi+1

we have that c(T̃ ) = c(K|µ|(T ))− 1. Therefore c(T ) = c(K|µ|(T )).

Let p be any composition such that if i < j then pi ≥ pj − 1 and m be a

non-negative integer such that m ≥ pi − 1 for all i. Let p∗ be the partition formed by

reordering the entries of the composition p.

Assume that by induction that Hp1Hp2 · · ·Hpl1 =
∑
tc(T )sλ(T )[X] where the

sum is over all column strict tableaux of content p, then HmHp1Hp2 · · ·Hpl1 is a gener-

ating function for the column strict tableaux of content (m+ |p|, p).
There is a 1-1 correspondence between CST (m+|p|,p) and CST (m+|p|,p∗) by ap-

plying transpositions (i, i + 1) where i > 1 and the difference between the charge
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of a tableau and its image under these transpositions is always the same, say k =

n(m, p)− n(m, p∗) (the cocharge stays fixed under transpositions (i, i+ 1)). This shows

that

HmHp1Hp2 · · ·Hpl1 =
∑

CST (m+|p|,p)

W|p|(T ) =
∑

CST (m+|p|,p∗)

tkW|p|(T )

By the previous argument we have that this is equal to

=
∑

CST (m,p∗)

tktc(T )sλ(T )[X]

Again, a sequence of transpositions of the form (i, i+ 1) where i > 1 gives a correspon-

dence between CST (m,p∗) and CST (m,p) and increases the charge of each tableau by

exactly k so we can say that

HmHp1Hp2 · · ·Hpl1 =
∑

CST (m,p)

tc(T )sλ(T )[X]

3.5 Unbuilding tableaux

Since when m ≥ µ1 − 1 the tableaux of content (m,µ) are ’built’ from the

tableau of content µ by adding m 1’s, this process can be reversed and can be used to

calculate the charge of a tableau.

Any tableau, T of content µ and shape λ corresponds to a tableau, T̃ of content

(µ1 + |µr|, µr) and shape (λ1 + |µr|, λr) found by sliding the cells of the first row of the

tableau to the right and inserting |µr| 1s. Cast in terms of the operators that have

already been described T̃ = A
(λ1+|µr|,λr)
|µr| (T ) and T = K|µr|(T̃ ).

T̃ can be recognized as the operator H
(λ1+|µr|,λr)
µ1 applied to a tableau, S, of

content µr. S is found by un-cyclaging the cells in the first row that are not labeled

by 1 to create a tableau that can be recognized as S
|µr|
µ1 S. Therefore we have that

T = K|µr|H
(λ1+|µr|,λr)
m S. By abuse of notation we will say that T = Hλ

mS.

This gives an inductive method for calculating the charge of a tableau. Since

the number of cells uncylaged in this process is equal to the number of cells that are not

labeled by a 1 in the first row we will have that the charge is c(T ) = c(S) + λ1 − µ1.
By iterating this operation we have that (again, by abusing notation)

T = Hν(1)

µ1 Hν(2)

µ2 · · ·H
ν(l(µ))

µl(µ)
·
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where |ν(i)| = µi +µi+1 + · · ·+µl(µ), and ν(1) = λ(T ). The charge of this tableau will be

the number of cells cyclaged in this process. In the ith step the number cells cyclaged

is ν(i)1 − µi. Therefore the charge of the tableau is given by c(T ) =
∑l(µ)

i=1(ν(i)1 − µi) =

(
∑l(µ)

i=1 ν
(i)

1)− |µ|.

Example 3.5.1. Consider the tableau

T =

6 7

5 6 8

3 4 7

2 3 4

1 1 2 5 9

6 7
5 6 8
3 4 7
2 3 4

1 1 2 5 9

−→

2 5 9
6 7
5 6 8
3 4 7
2 3 4

1 1

−→
9
6 7
5 5 8
3 4 6
2 2 3 4 7

−→
8
5 6
4 4 7
2 3 5
1 1 2 3 6

S =

8

5 6

4 4 7

2 3 5

1 1 2 3 6

c(T ) = c(S) + 3

T = H
(5,3,3,3,2)
2 S

Example 3.5.2. The charge of the tableau 2 3
1 1 4

can be calculated by the following

procedure:

2 3
1 1 4

−→ 2 3
1 1 4

−→
4

2 3
1 1

−→ 4
2 3

−→ 3
1 2

c
(

2 3
1 1 4

)
= 1 + c

(
3
1 2

)

3
1 2

−→ 3
1 2

−→
2

3
1

−→ 2 3 −→ 1 2
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c
(

3
1 2

)
= 1 + c

(
1 2

)

1 2
−→

1 2
−→ 2

1
−→ 2 −→ 1

c ( 1 2 ) = 1 + c ( 1 ) = 1

Therefore the charge of the tableau 2 3
1 1 4

is 3 and 2 3
1 1 4

= H
(3,2)
2 H

(2,1)
1 H

(2)
1 H

(1)
1 ·.

Example 3.5.3. The tableau
4
2 3 5
1 1 2 6

is isomorphic to H
(10,3,1)
2

5
3
1 1 2 4

(and is equal to

K6 applied to this tableau).

5
3
1 1 2 4

is isomorphic to H
(8,1,1)
2

3
1 2 4

.

3
1 2 4

is isomorphic to H
(5,1)
1

3
1 2

.

3
1 2

is isomorphic to H
(4,1)
1 1 2 .

1 2 is isomorphic to H
(3)
1 1 .

By abuse of notation
4
2 3 5
1 1 2 6

= H
(4,3,1)
2 H

(4,1,1)
2 H

(3,1)
1 H

(2,1)
1 H

(2)
1 H

(1)
1 · and the

charge will be
∑6

i=1 ν
(i)
1 − 8 = 8.

3.6 A list of tableau operations

Let λ = λ(T ) and µ = µ(T ). ρ/λ ∈ Hn.

Table 3.1 gives a list of tableau operators mentioned in this paper and their

effect on charge and cocharge. The charge and cocharge entries in the table of CνT and

C−1ν T assume that the cell that is evacuated and inserted is not a 1.

Table 3.2 lists the tableau operators mentioned in this paper and gives the

effect on the content and shape when that can be expressed in terms of the original
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Operation charge cocharge

(i, i+ 1)T c(T ) + µi − µi+1 co(T )

θµνT n(ν)− n(µ) + c(T ) co(T )

CνT c(T ) + 1 co(T )− 1

C−1ν T c(T )− 1 co(T ) + 1

KnT c(T ) co(T )− n(2µ1−n−1)
2

AρnT c(T ) co(T ) + n(2µ1−n−1)
2

Hρ
mT c(T ) + |λ/ρr| co(T ) + |T | − |λ/ρr|

RnT c(T ) + |T | co(T )

SnT c(T ) co(T ) + |T |

Table 3.1: A list of tableau operators and their effect on charge and cocharge

Operation content shape

(i, i+ 1)T (i, i+ 1)µ λ

θµνT ν λ

CνT µ

C−1ν T µ

KnT (µ1 − n, µr)
AρnT (µ1 + n, µr) λ

Hρ
mT (m+ |T |, µ) ρ

RnT (n, µ) (n+ λ1, λ
r)

SnT (n, µ) (n, λ)

Table 3.2: A list of tableau operators and their effect on shape and content

tableau, T . The shape of Cν(T ), C−1ν (T ), and Kn(T ) are not listed because the exact

shape is dependent on more than the shape of T . It is known that λ(Cν(T )) ← ν and

λ(C−1ν (T ))← ν and λ(T )/λ(Kn(T )) ∈ Hn, but these entries in the table have been left

blank.

If T is a standard tableau then the operation of reflecting the shape about the

diagonal may be denoted by ωT . This is an involution that has the effect of interchanging

the charge and the cocharge (that is, c(ωT ) = co(T )).
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