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Introduction

For a Galois covering π : A → B the Schwarz genus g(π) is the minimum number
for which one can cover the base with open sets Ui so that the covering, restricted
to Ui is trivial. This number can also be defined as d + 1 where d is the minimum
dimension of a space X with a Galois covering Y → X so that A = p∗(Y ) is the
pull back of some classifying map ρ : B → X . In this language lower bounds for d
can be determined by the non vanishing of cohomological obstructions. For a more
precise discussion we refer to [DPS], [Sc].

In this paper we continue the study of a special but important example. Let
Pn be the space of monic polynomials of degree n over C with distinct roots, the
complement of the discriminant hypersurface and let

∆ := {(z1, z2, . . . , zn} ∈ Cn | zi 6= zj , ∀i 6= j}, Pn = Cn − ∆/Sn

(∆ is the big diagonal).
Problem Compute the Schwarz genus g(n) := g(πn) for the covering

πn : Cn − ∆ → Pn = Cn − ∆/Sn.

It is well known and simple to prove that g(n) ≤ n and it was known that, if
n = pk is a prime power this is an equality ([Va]).

In a previous paper ([DPS]) it was studied the first unknown case n = 6 and
showed that g(6) = 5.

It seems reasonable to expect that g(m) = m if and only if m is a prime power.
In fact in [DPS] we show that a sufficient condition for g(m) < m is the vanishing
of the homology group:

Hn−1(Sn, Hn−1(Cn − ∆, Z))

and we conjecture that this vanishing holds when n is not a prime power.

In order to understand this conjecture we need to recall some facts about the
structure of Hn−1(Cn − ∆, Z) as an Sn module. We will use its relationship with
another standard module Lie(n) the space spanned over Z by the multilinear Lie
monomials in n variables.

It is proved in [FC] that

Hn−1(Cn − ∆, Z) = hom(Lie(n), Z) ⊗ sign

sign denotes the sign representation of the symmetreic group.
In a recent paper ([AD]) Arone and Dwyer have proved the vanishing of the

homology Hi(Sn, hom(Lie(n), Z)), i ≥ 0. On the other hand the twisting by sign
seems to change drastically the picture and at least we were not able to use their
methods.
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On the other hand, in a private letter G. Z. Arone informs us that the methods
contained in his paper with M. Mahowald (cf. [AM]) allow to prove the conjecture
for every n which is not of the form 2 ∗ pk (so almost a complete solution).

In this paper we present a different approach to the computation which we are
able to complete only for numbers of type n = 3 ∗ 2k, k > 0, for these numbers
we show that the required homology vanishes by proving a stronger result which
seems to be of independent interest.

The method in principle might be extended to numbers in which odd primes
appear in a square free manner but at the moment the final computations become
combinatorially very heavy and we have carried them out using a computer program
only for n = 10 getting again the vanishing required.

REMARK. In this paper all the computations will be made using the description
Hn−1(Cn − ∆, Z) = hom(Lie(n), Z) ⊗ sign.

In the previous paper with Salvetti ([DPS]) we had made the computations
using the presentation of Hn−1(Cn −∆, Z) which comes directly from the Salvetti
complex. Also this presentation leads to some rather interesting combinatorics,
quite different from the one of this paper, and we hope in the future to make more
explicit the relationship between the two approaches.

1. Some remarkable representations

1.1. The structure of Lie(n). Let us simplify the notations and write for short
hom(Lie(n), Z) ⊗ sign := L(n).

We need to recall some standard facts on Lie(n).
To make the notations as simple as possible we denote the variables appearing

in the formal expressions of Lie(n) simply as numbers 1, 2, . . . instead of the more
cumbersome notation x1, x2, . . . .

Let us use the notation (defined recursively):

{i, j} = [i, j], {i1, . . . , in} := [i1, {i2, . . . , in}].

It is well known [Re] that the elements:

(i1, i2, . . . , in−1) := {i1, i2, . . . , in−1, n} = [i1, [i2, [. . . [in−1, n] . . . ]]

as (i1, i2, . . . , in−1) runs on the set of (n − 1)! permutations of 1, 2, . . . , n − 1 form
a basis of Lie(n) (formed by the expressions ending with n), which we will call the
normal basis.

Some of the computations consist in writing a general monomial in normal form

or as linear combination of the normal basis.

We like to think of the elements (i1, i2, . . . , in−1) as words (in the given alpha-
bet of integers), as such we can do some combinatorial operations on words, like
juxtaposition A B and also reversing the letters in a word, we will use the symbol
H∨ to indicate the word H reversed.

Finally if J is a word and H a subword, we will write by abuse of notation H ⊂ J
(we do not require the letters of H to be consecutive in J) we define J − H to be
the complementary subword, obtained deleting the elements in H .
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We want to describe the action of Sn (and later a hidden action of Sn+1) on
the space Lie(n) described combinatorially by the basis of words in the elements
1, 2, . . . , n − 1.

The action of Sn−1 is the obvious one permuting the letters.
We consider now τ := (n − 1, n), we need to determine the action of (n − 1, n)

and have:

Theorem 1. Write a word M as M := I n − 1 J . We get

(1) τ(M) =
∑

H⊂J

(−1)|H|+1I (J − H) n − 1 Ȟ.

Proof. We have

τ(I n − 1 J) = τ{I n − 1 J n} = {I n J n − 1}

We proceed by induction on the cardinality of J . If J is empty the statement is
clear. Let J := aK it will be enough to rewrite in normal form

{n J n−1} = [n, {J n−1}] = [n, [a, {K n−1}]] = −[[a, n], {K n−1}]+[a, [n, {K n−1}]]

we apply induction (think of [a, n] as a variable n and remark that {I, n} =
{I, a, n} = (I a):

[[a, n], {K n − 1}] =
∑

H⊂K

(−1)|H|+1{ (K − H) n − 1 Ȟ a},

[a, [n, {K n−1}]] =
∑

H⊂K

(−1)|H|+1{a (K−H) n−1 Ȟ} =
∑

H⊂K

(−1)|H|+1{J−H n−1 Ȟ}

also clearly
∑

H⊂K

(−1)|H|+1{ (K−H) n−1 Ȟ a} = −
∑

M={a,H}⊂J, a∈M

(−1)|M |+1{ (J−M) n−1 M̌}

clearly this separates the sum into two terms, the subsets which contain a and the
others.

�

1.2. The structure of L̃(n). We want to study now a closely related object. We
start by embedding Lie[n − 1] into Lie[n] by the map j : m → [n, m]. If m is an
element of the normal basis, [n, m] is not in normal form but this will be useful for
our computations. In any case we have by definition that:

j({i1, . . . , in−1}) = {n, i1, . . . , in−1}

Let σh := {1, 2, 3, . . . , h − 1, n − 1, h + 1, . . . , n− 2, n, h} (the cycle (h, n− 1, n),
if h 6= n − 1, n, otherwise the transposition σn−1 = (n − 1, n) and finally σn = 1)
that fixes all integers i < n − 1, i 6= h) , then σhSn−1 = {τ ∈ Sn | τ(n) = h}.

We want to introduce now the induced representation IndSn

Sn−1
Lie(n − 1) and

identify

IndSn

Sn−1
Lie(n − 1) = ⊕n

h=1σhLie(n − 1),

of course σn is the identity and in this way we identify σnLie(n−1) with Lie(n−1).
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Use the notation Lh := σhLie(n − 1) and remark that Lh = σLie(n − 1) if
h = σ(n), notice that we identify Ln = Lie(n− 1) ant that, given a permutation τ
we have τ(Lh) = Lτ(h).

The embedding j of Lie(n− 1) into Lie(n) extends to a map

j̃ : IndSn

Sn−1
Lie(n− 1) = ⊕σ∈Sn/Sn−1

σLie(n − 1) = ⊕hσhLie(n − 1) → Lie(n)

by j̃(
∑

σimi) =
∑

σij(mi) =
∑

σi([n, mi]). Notice that, for h 6= n the image of

j̃(σhm), where m = (i1, . . . , in−2) ∈ Lie(n− 1) is a normalized monomial, is still a
normalized monomial, in fact:

σh(j(i1, . . . , in−2)) = σh([n, (i1, . . . , in−2)]) =

= σh([n, {i1, . . . , in−2, n − 1}]) = σh({n, i1, . . . , h, . . . , in−2, n − 1}) =

= {h, i1, . . . , n − 1, . . . , in−2, n} = (h, i1, . . . , n − 1, . . . , in−2)

Let us prove that the map ⊕h6=nσhLie(n − 1) → Lie(n) is a linear isomorphism.
From the previous formula the monomials image of σhLie(n − 1), h 6= n are

normalized and starting with h, these are linearly independent and of the correct
dimension so this is proved.

Thus the kernel of the map j̃, which we will denote by L̃(n) := Ker(j̃), projects
isomorphically to the factor with σn = 1.

Remark that, since ⊕σ∈Sn/Sn−1, σ(n)6=nσLie(n− 1) =
∑

σ/∈Sn−1
σLie(n− 1), this

is an Sn−1 submodule and thus the projection, which we will denote by ρ, is Sn−1

equivariant.

On L̃(n) which we identify to L(n− 1) with ρ, we need to identify the action of
(n − 1, n). One way to procede is to compute explicitely:

Lie(n − 1)
ρ−1

−→ L̃(n) ⊂ IndSn

Sn−1
Lie(n− 1) = ⊕σ∈Sn/Sn−1

σLie(n − 1)

and then, given a normalized monomial J , compute ρ((n − 1, n)ρ−1J).
So reconsider the formula of theorem 2,

τ(M) =
∑

H⊂J

(−1)|H|+1I (J − H) n − 1 Ȟ.

applied to J = (i1, . . . , in−2), M = n − 1 J when τ(M) = {n J n − 1}, it means
that:

0 = {n J n − 1} −
∑

H⊂J

(−1)|H|+1 (J − H) n − 1 Ȟ.

In the sum −
∑

H⊂J (−1)|H|+1 (J − H) n − 1 Ȟ call bh the contribution of the
summands relative to normalized monomials starting with h (here h = 1, . . . , n−1).
By the previous analysis bh = σh(j(ch)), ch ∈ Lie(n − 1).

We may interpret this relation as the element

ρ−1(J) = RJ = (J) +
∑

h<n

σhch ∈ L̃(n), ch = Th(J).

let us look now at the term Tn−1(J), it is the signed sum of all the words (J −
H) n− 1 Ȟ which start with n− 1, but this happens only when H = J , giving the
term −(−1)n−2+1J∨ = (−1)nJ∨.

When we apply the exchange (n, n − 1) to this relation notice that we have:

(n − 1, n)RJ = RTn−1(J),
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this gives the formula:

(2) (n − 1, n)(J) = (−1)n(J∨). �

REMARK Since n is arbitrary we have in fact explicited the hidden action of Sn+1

on Lie(n). Conceivably this coincides with the one that is obtained by the theory
of moduli of pointed rational curves (cf. [G]).

Let us finish with some remarks.
Remark. i) Lie(n) restricted to Sn−1 is free of rank 1.

ii) L̃(n) restricted to Sn−2 is free of rank 1.
iii) The same statement is true after dualizing or tensoring with the sign repre-

sentation.

2. Homology.

2.1. Some reductions. Recall that hom(Lie(n), Z) ⊗ sign := L(n) and we want
to compute H∗(Sn, L(n)).

Theorem 2. The groups Hi(Sn, L(n)) are killed by n, for all i > 0.

Proof. Hi(Sn−1, L(n)) = 0, ∀i > 0 by the freeness property.
We have that multiplication by n factors as:

n : Hi(Sn, L(n))
res
−→ Hi(Sn−1, L(n)) −→ Hi(Sn, L(n)). �

2. We have the exact sequence:

0 → L̃(n) → IndSn

Sn−1
Lie(n − 1) → Lie(n) → 0

dualizing and tensoring with sign we get:

0 → L(n) → IndSn

Sn−1
L(n − 1) → hom(L̃(n), Z) ⊗ sign → 0

By Shapiro’s lemma Hi(Sn, IndSn

Sn−1
L(n − 1)) = Hi(Sn−1, L(n − 1)) is killed by

n − 1 (for i > 0) and so the n−torsion of Hi(Sn, IndSn

Sn−1
L(n − 1)), i > 0 is 0.

By the long exact sequence the n−torsion of Hi(Sn, L(n)) equals the n−torsion

of Hi+1(Sn, hom(L̃(n), Z) ⊗ sign)).

Let us denote for short P (n) := hom(L̃(n), Z)⊗ sign), it is free as Sn−2 module.
Now look at n = pm with (p, m) = 1, notice that Cp × Sn−p has index I :=

n!/(p × (n − p)!) in Sn prime with p (with Cp the cyclic group of order p), the
composition, is multiplication by I , invertible on p torsion:

I : Hi(Cp × Sn−p, P (n)) → Hi(Sn, P (n)) → Hi(Cp × Sn−p, P (n)).

In order to show that the p−torsion of Hn−1(Sn, L(n)) vanishes it is thus sufficient
to show that the p−torsion of Hn(Cp × Sn−p, P (n)) is 0.

Now consider the Lyndon Serre spectral sequence (in homology):

E2
i,j = Hi(Cp, Hj(Sn−p, P (n))) = 0, if j > 0.

Since P (n) is a free Sn−p module, it degenerates and gives that:

Hi(Cp × Sn−p, P (n)) = Hi(Cp, H0(Sn−p, P (n)) = Hi(Cp, P (n)Sn−p
)

By P (n)Sn−p
= H0(Sn−p, P (n)) we mean the space of coinvariants, which for a

G−module M means M modulo the submodule spanned by the elements m −
g.m, g ∈ G.
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Now we restrict in particular to the case p = 3, P (n) has dimension (n− 2)! and
is a free Sn−2 module of rank 1, so has rank n − 2 as free Sn−3 module and the
coinvariants of Sn−3 have rank n − 2 as Z module.

We first do our computations in a dual module P (n)∗ = Lie(n− 1) ⊗ sign. We
want to compute with the coinvariants with respect to Sn−3, we will denote by
Mn−2 this space of coinvariants thought of as a Z/(3) module.

Let us select in the basis the elements ch := (1, . . . , h − 1, n− 2, h, . . . , n − 3) in
which n − 2 appears in the h position and the others are linearly ordered. Given
an element (i1, . . . , in−2) its image in the coinvariants is εch, where ih = n − 2
and ε is the sign of the permutation that reorders in increasing order the elements
ik, k 6= h.

The two elements (n − 2, n − 1), (n − 1, n − 2) commute with Sn−3, hence act
on the coinvariants. We want to compute their matrices in the basis ch. We will
use the explicit formulas that we have developed. By abuse of notation we will use
the word symbols J, (J) also to mean their images in the coinvariants and use the
allowed reordering laws.

Start with the exchange (n, n− 1) which maps A n− 2 B to (−1)nB∨ n− 2 A∨,
when we apply it to ch = (1, 2, . . . , h−1, n−2, h, h+1, . . . , n−3) we have to reorder
the numbers 1, 2, . . . , n − 3 which appear in reverse order.

The permutation of Sn−3 which reverses order has sign (−1)(n−3)(n−4)/2 so the
sign is (−1)n+(n−3)(n−4)/2 = (−1)n(n−1)/2, finally:

(3) (n, n − 1)ch = (−1)(
n

2)cn−1−h

For the action of (n− 2, n− 1) let us compute first (n− 2, n− 1)c1 = (n− 2, n−
1)(n − 2 J):

(n − 2, n − 1)(n − 2 J) =
∑

H⊂J

(−1)|H|+1(J − H) n − 2 H∨, J = (1, 2, . . . , n − 3);

reordering we get

(n−1, n−2)c1 = (n−1, n−2)(n−2 J) =
∑

H⊂J

(−1)|H|+1(−1)(
|H|
2 )(J −H) n−2 H.

If J−H has h elements, the image of the element (J−H) n−2 H in the coinvariants
is εch+1 where ε is the sign of the shuffle (J − H)H .

The case ch = (I n − 2 J), |I | = h − 1 can be easily reduced to this case.

(n−1, n−2)ch = (n−1, n−2)(I n−2 J) =
∑

H⊂J

(−1)|H|+1(−1)(
|H|
2 )I (J−H) n−2 H.

The sum
∑

H⊂J (−1)|H|+1(−1)(
|H|
2 )I (J −H) n−2 H, should be grouped according

to the terms which map to the same coinvariant up to sign as:

∑

H⊂J

(−1)|H|+1+(|H|
2 )I (J−H) n−2 H =

n−2−h
∑

k=0

(−1)k+1+(k

2)
∑

H⊂J, |H|=k

I (J−H) n−2 H,

if we denote by ε(J−H) H the sign of this as shuffle permutation we have finally in
the coinvariants:

(4)
∑

H⊂J, |H|=k

I (J − H) n − 2 H = (
∑

H⊂J, |H|=k

ε(J−H) H)cn−2−k



ON EQUATIONS OF DEGREE 3 ∗ 2m 7

So we need to compute, given two numbers a < b the sum of the signs of the
shuffles extracting a elements out of b.

Let us define this number as { b
a} and rewrite our formulas as:

(5)
∑

H⊂J, |H|=k

I (J − H) n − 2 H = {
n − 1 − h

k
}cn−2−k

(6) (n − 1, n− 2)ch = −

n−2−h
∑

k=0

(−1)(
k+1

2 ){
n − 1 − h

k
}cn−2−k

To explicit these numbers we have by a simple permutation argument:

{
b

a
} = {

b − 1

a
} + (−1)b−a{

b − 1

a − 1
}

by recursion one gets:

{
2b

2a
} =

(

b

a

)

, {
2b

2a + 1
} = 0, {

2b + 1

2a
} =

(

b

a

)

, {
2b + 1

2a + 1
} =

(

b

a

)

Combining the two formulas (3),(6) we get a formula for the action of the 3 cycle
g := (n − 2, n− 1, n) = (n − 2, n − 1)(n − 1, n).

(7) g.ch = (−1)(
n

2)(n − 1, n − 2)cn−1−h = −(−1)(
n

2)
h−1
∑

k=0

(−1)(
k+1

2 ){
h− 1

k
}cn−2−k.

In order to finish our computations we have to do two things, compute the
homology of the cyclic group of order 3 acting with the previously determined
matrix and also showing that this equals the homology for the coinvariants of the
dual action which is the one we are interested in. Let us first clarify this issue. Since
P (n) is dual of P (n)∗ = Lie(n− 1)⊗ sign, and they are both free as Sn−3 modules
we have dual bases also for coinvariants, and since the 3 cycle commutes with Sn−3

in the dual basis its matrix appears as the inverse transpose. If we change generator
of the cyclic group its matrix is just the transpose, so the analysis follows from the
next discussion.

Let M be a finitely generated free abelian group and T : M → M and endomor-
phism with T p = 1 for a prime p, so M is a Cp module and we want to compute
the homologies:

Hi(Cp, M), Hi(Cp, M
∗).

let R := Z[Cp]. Recall that a free resolution of Z as R module is given by the
sequence Cp = (g):

· · · → R
1+g+···+gp−1

−→ R
1−g
−→→ R

1+g+···+gp−1

−→ R
1−g
−→ R −→ Z −→ 0

thus the homology is the homology of the periodic complex

· · · → M
1+T+···+T p−1

−→ M
1−T
−→→ M

1+T+···+T p−1

−→ M
1−T
−→ M −→ 0.

This complex, after tensoring with Q is exact except in degree 0, similarly modulo
a prime different from p.

Even homology > 0 equals K/I where K is the kernel of 1 + T + · · · + T p−1 (a
direct summand in M), its dimension is the rank of the matrix 1 − T , and I the
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image of 1 − T . Using elementary divisor theory we get that dimFp
(K/I) equals

the difference of the ranks of 1 − T over C and modulo p.

Similarly for the odd homology we have to use 1 + T + · · · + T p−1 .
Remark that the rank of the homology for M or M ∗ are the same by the previous

discussion.
Now in order to finish our work we have to compute the rank and the rank mod

3 of the two matrices 1−T, 1+T +T 2 where T is the matrix given by the formula
(5).

Let us change the notation, set m := n − 2 and Tm the m × m matrix (acting
on the space Mm) given by (7).

(8) Tm.ch = −(−1)(
m+2

2 )
h−1
∑

k=0

(−1)(
k+1

2 ){
h − 1

k
}cm−k.

3. Computing Hi(Z/(3), Mm) when m = 2r is even

If we assume that m = 2r is even we have

1 +

(

m + 2

2

)

+

(

k + 1

2

)

≡

(

m − k

2

)

mod 2

so that Tm = DmZm where Dm is the diagonal matrix given by

(9) Dmch = (−1)(
h

2)ch, h = 1, . . . , m

and

(10) Zm.ch =

h−1
∑

k=0

{
h − 1

k
}cm−k.

Start from D2 and Z2:

D2 =

(

1 0
0 −1

)

, Z2 =

(

0 1
1 1

)

acting on V = Z2 with basis {x, y}. Consider Sr−1(V ) with basis {xr−1, xr−1y, . . . , yr−1}.
Then

Sr−1(D2)(x
r−sys−1) = (−1)s−1xr−sys−1

and

Sr−1(Z2)(x
r−sys−1) = yr−s(x + y)s−1 =

s−1
∑

t=0

(

s − 1

t

)

xtyr−1−t.

Take another copy of V with basis {ξ, η} and consider Sr−1(V ) ⊗ V . We want to
identify it with M2r setting:

c2s−1 = xm−sys−1 ⊗ ξ, c2s = xm−sys−1 ⊗ η

for 1 ≤ s ≤ r. Notice now that
(

2s− 1

2

)

≡ s − 1 mod 2,

(

2s

2

)

≡ s mod 2.

It follows that, since

Sr−1(D2) ⊗ D2(c2s−1) = (−1)s−1c2s−1 and Sr−1(D2) ⊗ D2(c2s) = (−1)sc2s−1,
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we have that for each h = 1, . . .m

Sr−1(D2) ⊗ D2(ch) = (−1)(
h

2)ch

hence Dm = Sr−1(D2) ⊗ D2. Also

Sr−1(Z2) ⊗ Z2(c2s−1) =
s−1
∑

t=0

(

s − 1

t

)

xtyr−1−t ⊗ η =
s−1
∑

t=0

(

s − 1

t

)

c2(r−t) =

=

2s−2
∑

k=0

{
2s− 2

k
}cm−k

Sr−1(Z2)⊗Z2(c2s) =

s−1
∑

t=0

(

s − 1

t

)

xtyr−1−t⊗(ξ+η) =

s−1
∑

t=0

(

s − 1

t

)

(c2(r−t)−1+c2(r−t)) =

=
2s−1
∑

k=0

{
2s− 1

k
}cm−k.

So we have that for each h = 1, . . .m

Sr−1(Z2) ⊗ Z2(ch) =
h−1
∑

k=0

{
h − 1

k
}cm−k

hence Zm = Sr−1(Z2) ⊗ Z2. In conclusion we have proved

Proposition 1. If m = 2r, Tm = Sr−1(T2) ⊗ T2.

3.1. Even Homology. The above result allows us quite easily to compute the
rank of 1 − Tm both in characteristic zero and modulo 3.

If k is a given field, set I
(k)
r equal to the dimension of the subspace of vectors

fixed by Sr−1(T2) ⊗ T2 acting on Sr−1(k2) ⊗ k2, we have that:

rankC(1 − Tm) − rankF3
(1 − Tm) = I(F3)

r − I(C)
r

In simpler notation, use a generating series I (k)(t) :=
∑∞

r=0 I
(k)
r tr.

So now we proceed to compute the two cases.
In the first case k = C the matrix T2 is conjugate to the matrix

(

ε 0
0 ε−1

)

with ε is a primitive third root of one. Thus we compute first the graded trace of
S(T2) ⊗ T2 on S(V ) ⊗ V .

By Molien’s formula the trace of S(T2) on S(V ) is 1/(1+t+t2) while the trace T2

on V is −t (we are in degree 1), so the graded trace required is −t/(1 + t + t2). On
the other hand the graded dimension is 2t/(1− t)2. In each degree the character is
of the form n(ε+ ε−1)+m = m−n and the dimension is 2n+m hence the formula:

I(C)(t) =
1

3
[

2t

(1 − t)2
−

2t

1 + t + t2
] =

2t2

(1 − t)(1 − t3)

Let us consider the case k = F3 of the matrix modulo 3, changing the basis one
has the matrix

(

1 1
0 1

)

,

call a, b the elements of the new basis.



10 C. DE CONCINI, C. PROCESI, E.ROGORA, AND M.ZABROCKI

The first remark is that, in the polynomial ring the elements a, c := b(b−a)(b+a)
are two invariants (of degree 1,3 respectively) and 1, b, b2 is a basis over this ring
A := k[a, c] of invariants.

In this basis the matrix of U := S(T2) is:




1 a a2

0 1 −a
0 0 1





Similarly treat S(V ) ⊗ V as free module over A with basis 1 ⊗ a, b ⊗ a, b2 ⊗ a, 1 ⊗
b, b⊗ b, b2 ⊗ b in this basis T := S(T2) ⊗ T2 is:

T =

















1 a a2 1 a a2

0 1 −a 0 1 −a
0 0 1 0 0 1
0 0 0 1 a a2

0 0 0 0 1 −a
0 0 0 0 0 1

















Write an invariant as a vector with 6 coordinates fi by inspection we get f6 =
f5 = f3 = 0 and f4 = −af2.

Thus the invariants of S(V ) ⊗ V are a free module over the polynomial ring
A = k[a, c] with basis 1⊗a, b⊗a−a⊗b of degrees 1,2 respectively. So its generating
series of dimension is:

t + t2

(1 − t3)(1 − t)

The difference of the two generating series is:

2t2

(1 − t)(1 − t3)
−

t + t2

(1 − t3)(1 − t)
=

t

1 − t3
.

We deduce that

Proposition 2. The even homology H2i(Z/(3), M2r) is F3 when r ≡ 1, mod 3
and 0 otherwise.

This is the only computation we need for our main result.

Theorem 3. When n = 3 ∗ 2k, k > 0 we have:

Hn−1(Sn, Hn−1(Cn − ∆, Z)) = 0

Proof. We have already remarked that the homology is killed by n so we separately
have to show that the 3 and 2 torsion is 0. For 3 we use the work just done and see
that all the Hi(Sn, Hn−1(Cn − ∆, Z)) with i odd have no 3 torsion, since n ≡ 0,
mod 3 . For the 2 torsion we can use the results of Arone and Dwyer, in fact, when
we work modulo 2, the twisting by the sign disappears.

3.2. Odd homology. For completeness let us compute odd homology. We easily
compute 1 + T + T 2 getting:

1 + T + T 2 =

















0 0 −a2 0 −a 0
0 0 0 0 0 a
0 0 0 0 0 0
0 0 0 0 0 −a2

0 0 0 0 0 0
0 0 0 0 0 0
















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With the same notation as before, the kernel is formed by the vectors with f6 =
0, f5 = −af3 its dimension series is thus:

t2 + 2t + t3

(1 − t)(1 − t3)

Instead the dimension of the kernels over Q is like the dimension of the image of

1−T which from our computations is 2t+2t3

(1−t)(1−t3) so finally taking the difference we

get the series for homology:
t2

1 − t3

so that

Proposition 3. The odd homology H2i+1(Z/(3), M2r) is F3 when r ≡ 2, mod 3
and 0 otherwise.

4. Computing Hi(Z/(3), Mm) when m = 2r + 1 is odd

If we assume that m = 2r + 1 is odd we have

1 +

(

m + 2

2

)

+

(

k + 1

2

)

≡

(

m − k + 1

2

)

+ 1 mod 2

Define Mm to be this space of dimension m = 2r+1 with the given Z/(3) action.
We proceed in the following way. Consider the direct sum of all the spaces

M := ⊕mMm, m = 2r +1 we want to identify it with a different module. Consider
the polynomial ring A in two generators u, v (of degree 1) and the free rank 2
module N over A with basis 1, a (of degrees 0,1).

We identify Nr with Mr through the formulas:
c2h+1 = ur−hvh, h = 0, . . . , r, c2h = ur−hvh−1a.

Next we need to define the action of an (homogeneous) operator φ (or order
3) on N as follows. The action is first defined on A and then on N so that it is
semilinear with respect to the action of A

φ(u) = −v, φ(v) = u − v, φ(a) = a − v, φ(1) = 1.

Let us check that the isomorphism between M and N preserves the Z/(3) actions:

φ(c2h+1) = (−1)r−hvr−h(u−v)h = (−1)r−h(

h
∑

k=0

(

h

k

)

(−1)h−kukvr−k =

h
∑

k=0

(

h

k

)

(−1)r−kcm−2k.

φ(c2h) = (−1)r−hvr−h(u−v)h−1(a−v) = (−1)r−hvr−h
h−1
∑

k=0

(

h − 1

k

)

(−1)h−1−kukvh−1−k(a−v) =

=

h−1
∑

k=0

(−1)r−k−1vr−k−1uka +

h−1
∑

k=0

(−1)r−kukvr−k =

=

h−1
∑

k=0

(−1)r−k−1

(

h − 1

k

)

c2r−k +

h−1
∑

k=0

(−1)r−k

(

h − 1

k

)

c2(r−k)+1

=

h−1
∑

k=0

(−1)r−k−1

(

h − 1

k

)

cm−2k−1 +

h−1
∑

k=0

(−1)r−k

(

h − 1

k

)

cm−2k
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With this description of the group action it is not hard to compute the graded
dimension of the invariants over Q and F3, recall that u, v, a have degree 1 while 1
has degree 0.

φ(u) = −v, φ(v) = u − v

in char. 3 set z = u + v, w = v have:

φ(z) = z, φ(w) = z + w

Then z, t := w(w− z)(w + z) are two invariants and, if B = F3[z, t] we have that
N is a free module over B with basis 1, w, w2, a, wa, w2a (of degrees 0, 1, 2, 1, 2, 3)
in this basis the matrix of φ (which is now linear) is:

T :=

















1 z z2 0 0 −t
0 1 −z −1 −z z2

0 0 1 0 −1 z
0 0 0 1 z z2

0 0 0 0 1 −z
0 0 0 0 0 1

















The invariants are thus a B module and the kernel of the matrix 1 − T . This
kernel is easily computed and is formed by the vectors of coordinates fi, i = 1, . . . , 6
with:

f6 = 0 = f5, f4 = −zf3, f2 = f4

So the kernel is a free module with one generator of degree 0 and one of degree
2 so its dimension series is (1 + t2)/((1 − t3)(1 − t)).

Now over C we compute as follows. We have that A ⊂ N is a submodule but, in
characteristic 0, we have N = A ⊕ N/A, clearly by the formulas N/A is A shifted
in dimension by 1, computing by Molien’s formula we get for the dimension series
of the invariants (1 + t3)/((1 − t3)(1 − t)) over C taking the difference we obtain
t2/(1 − t3).

Proposition 4. The even homology H2i(Z/(3), M2r+1) is F3 when r ≡ 2, mod 3
and 0 otherwise.

For the odd homology we use the matrix 1 + T + T 2 which mod. 3 is:

















0 0 −z2 −z z2 −z3

0 0 0 0 0 z2

0 0 0 0 0 z
0 0 0 0 0 −z2

0 0 0 0 0 0
0 0 0 0 0 0

















Its kernel is given by f6 = 0, f4 = z(f5 − f3) so its dimension series is (1 + t +
2t2)/((1 − t3)(1 − t))

Over Q we have to take the difference:

1 + t

(1 − t)2
−

1 + t3

(1 − t3)(1 − t)
=

2(t + t2)

(1 − t3)(1 − t)
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finally taking again the difference of the two ranks, in char. 0 and 3 we get:

1 + t + 2t2

(1 − t3)(1 − t)
−

2(t + t2)

(1 − t3)(1 − t)
=

1

(1 − t3)

Proposition 5. The odd homology H2i+1(Z/(3), M2r+1) is 0 when r ≡ 0, mod 3
and F3 otherwise.

4.1. n = 10 and final comments. We have written a Mathematica notebook to
compute the matrices T (m, h) which give the action of the cyclic group of order h
on the coinvariants with respect to Sm+2−h acting on P (m + 2).

This notebook can be downloaded from the internet location:
web/ricercatori/rogora/lie/LIEn.nb
In particular, the matrices Tm of this paper can be computed as T (m, 3) in the

notebook. The matrix T8,5 can be used to prove that g(10) < 10. The details are
given in the notebook.
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