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1. Introduction and Terminology

We need to begin with terminology, so that we can present concepts without ambiguity. 

Dimension. In physics and mathematics, the dimension of a space or object is 
informally defined as the minimum number of coordinates needed to specify each point 
within it. Thus a line has a dimension of one because only one coordinate is needed to 
specify a point on it. A surface such as a plane or the surface of a cylinder or sphere has 
a dimension of two because two coordinates are needed to specify a point on it.1 More 
formally, As we know, if Dim R = (n) then there are n vectors in the (orthogonal or not) 
basis of the space.

Codimension. Codimension is a relative concept: it is only defined for one object inside 
another. There is no “codimension of a vector space (in isolation)”, only the codimension 
of a vector subspace.2 As an example, if we were to look at a line which has a 
dimension of 1, within a cube, its codimension will be 3 - 1 = 2. Whereas a line within a 
square (of dimension 2) will have codimension 2 - 1 = 1. 

Hyperplanes. A generalization of planes into a different number of dimensions than the 
intuitive 3 space. A hyperplane is determined by a point on the plane and a vector 
perpendicular to it (its normal). A hyperplane of an n-dimensional space is a subset with 
dimension n − 1. By its nature, it separates the space into two half spaces3. 
Hyperplanes are characterized also by the property of having a codimension of 1. They 
are either parallel, intersect in a subspace of codimension 2. We can describe these 
ideas more clearly with a diagram from Borovik 2010:
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1 Wikipedia “Dimension”  http://en.wikipedia.org/wiki/Dimension

2 Wikipedia “Co Dimension” http://en.wikipedia.org/wiki/Codimension

3 Wikipedia “Hyperplane” http://en.wikipedia.org/wiki/Hyperplane

Fig 1: Hyperplanes in 2 Space. In our familiar 2-
space, we have three infinite hyperplanes ʻcuttingʼ 
the space into seven chambers, labeled here from 
A through G. Note that there are 3 chambers with 
2 faces, and 4 chambers with three faces. There 
is only one finite chamber, A. 

http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Space
http://en.wikipedia.org/wiki/Space
http://en.wikipedia.org/wiki/Mathematical_object
http://en.wikipedia.org/wiki/Mathematical_object
http://en.wikipedia.org/wiki/Coordinates
http://en.wikipedia.org/wiki/Coordinates
http://en.wikipedia.org/wiki/Point_(geometry)
http://en.wikipedia.org/wiki/Point_(geometry)
http://en.wikipedia.org/wiki/Line_(geometry)
http://en.wikipedia.org/wiki/Line_(geometry)
http://en.wikipedia.org/wiki/Surface
http://en.wikipedia.org/wiki/Surface
http://en.wikipedia.org/wiki/Plane_(mathematics)
http://en.wikipedia.org/wiki/Plane_(mathematics)
http://en.wikipedia.org/wiki/Cylinder_(geometry)
http://en.wikipedia.org/wiki/Cylinder_(geometry)
http://en.wikipedia.org/wiki/Sphere
http://en.wikipedia.org/wiki/Sphere
http://en.wikipedia.org/wiki/Plane_(geometry)
http://en.wikipedia.org/wiki/Plane_(geometry)
http://en.wikipedia.org/wiki/N-dimensional_space
http://en.wikipedia.org/wiki/N-dimensional_space
http://en.wikipedia.org/wiki/Half_space
http://en.wikipedia.org/wiki/Half_space


2. Reflections and Mirrors

Reflections. A reflection (also spelled reflexion) is a mapping from a Euclidean space 
to itself that is an isometry (preserves distance) with a hyperplane as set of fixed points; 
this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The 
image of a figure by a reflection is its mirror image in the axis or plane of reflection. For 
example the mirror image of the small Latin letter p (if drawn on a blackboard) for a 
reflection with respect to a vertical axis would look like q. Its image by reflection in a 
horizontal axis would look like b. A reflection is an involution: when applied twice in 
succession, every point returns to its original location, and every geometrical object is 
restored to its original state.4 The following diagram generated in Google Sketchup™ 
(.sku) should help to make this a little clearer. 

Fig 2: Reflection through a (hyper)plane.  In 3 space, reflection through a hyperplane is an isometry 
(preserves distance) that is, the reflection of a vector has the same magnitude as the original vector.

Reflection through a hyperplane in n dimensions has the following (vector) formula. If 
the above reflection is considered then if α is orthogonal to the hyperplane, and the 
vector to be reflected is v, then 

(Read reflection of v in α is...)
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4 Wikipedia “Reflection - Mathematics”

http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Isometry
http://en.wikipedia.org/wiki/Isometry
http://en.wikipedia.org/wiki/Hyperplane
http://en.wikipedia.org/wiki/Hyperplane
http://en.wikipedia.org/wiki/Fixed_point_(mathematics)
http://en.wikipedia.org/wiki/Fixed_point_(mathematics)
http://en.wikipedia.org/wiki/Axis_of_symmetry
http://en.wikipedia.org/wiki/Axis_of_symmetry
http://en.wikipedia.org/wiki/Plane_(mathematics)
http://en.wikipedia.org/wiki/Plane_(mathematics)
http://en.wikipedia.org/wiki/Mirror_image
http://en.wikipedia.org/wiki/Mirror_image
http://en.wikipedia.org/wiki/Involution_(mathematics)
http://en.wikipedia.org/wiki/Involution_(mathematics)


5

If we now consider hyperplanes as mirrors, in the intuitive sense, we can create 
systems of them (like in a kaleidoscope). For our purposes, we want closed systems of 
mirrors that will reflect a solid (such as a square in 2-space) back upon itself. Please 
see the diagram, again from Borovik.6 

We now have enough terminology to move to root systems, where the study of 
reflections and mirrors began historically.
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5 Wikipedia “Reflections - Mathematics”

6 Borovik, Borovik. Mirrors and Reflections. 2010. Springer.

Fig 3: A closed system of mirrors Σ  is a finite set 
of hyperplanes that will reflect a shape unto itself. 
Note that all hyperplanes will intersect at  a single 
point if the shape is bounded and convex. (i.e. 
e.g.  not a donut). Note that the system of mirrors 
Σ pictured is not complete, more mirrors could be 
added, for this polytope.

Fig 3.1:  A closed system of  4 mirrors  for the 
square. Notice the difference between 2 
dimensional and 3 dimensional, and similarities.



3. Root Systems, Especially A2

Root System. In mathematics, a root system is a configuration of vectors in a Euclidean 
space satisfying certain geometrical properties.7 As defined on wikipedia we have the 
following technical but clear definition:

Let V be a finite-dimensional Euclidean vector space, with the standard Euclidean inner 
product denoted by . A root system in V is a finite set Φ of non-zero vectors (called 
roots) that satisfy the following properties:
1. The roots span V.
2. The only scalar multiples of a root α ∈ Φ that belong to Φ are α itself and –α.
3. For every root α ∈ Φ, the set Φ is closed under reflection through the 

hyperplane perpendicular to α. That is, for any two roots α and β, the 
set Φ contains the reflection of β, 

4. (Integrality condition) If α and β are roots in Φ, then the projection of β onto 
the line through α is a half-integral multiple of α. That is, 

In less technical terms, we have a root system if we have n non-parallel vectors, 
carefully chosen about the origin, such that closure, scalars and reflections are 
preserved. In a root system, all angles between two vectors are equal. For 
example, we can create the root system A2.
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7 Wikipedia “Root System - Mathematics Disambiguation”

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Linear_span
http://en.wikipedia.org/wiki/Linear_span
http://en.wikipedia.org/wiki/Reflection_(mathematics)
http://en.wikipedia.org/wiki/Reflection_(mathematics)
http://en.wikipedia.org/wiki/Hyperplane
http://en.wikipedia.org/wiki/Hyperplane


Take two vectors, α1 and α2 in 2 space, with a corresponding angle of 2π/3, as pictured 
below. 

Fig 4.2 : Add in the hyperplane orthogonal to a1.
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Fig 4.1: Stage 1, α1 and α2 in 2 space, the angle 
between is 2π/3 and WLOG we consider only 
vectors of unit length.

Fig 4.2 : Add in the hyperplane orthogonal to a1.

Fig 4.3 : Reflection of a2 through ha1, through the 
projection equation we find is equal to a1+a2.



And from here we add in the rest; reflections and mirrors until we close the system. 
Note the consistent angle between all 6 vectors in Φ, and all hyperplanes of reflection. 
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Fig 4.4: Filling in the rest of the reflections.



Looking beyond the geometry of A2, we can (and should have for more rigor) derive A2 
from algebraic structures.  

From wikipedia, we have the following realization for the construction of An:

Let V be the subspace of Rn+1 for which the coordinates sum to 0, and let Φ be the set 
of vectors in V of length √2 and which are integer vectors, i.e. have integer coordinates 
in Rn+1. Such a vector must have all but two coordinates equal to 0, one coordinate 
equal to 1, and one equal to –1, so there are n2 + n roots in all. One choice of simple 
roots expressed in the standard basis is: αi = ei – ei+1, for 1 ≤ i ≤ n.
The reflection σi through the hyperplane perpendicular to αi is the same as permutation 
of the adjacent i-th and (i + 1)-th coordinates. Such transpositions generate the full 
permutation group. For adjacent simple roots, σi(αi+1) = αi+1 + αi = σi+1(αi) = αi + αi+1, 
that is, reflection is equivalent to adding a multiple of 1; but reflection of a simple root 
perpendicular to a nonadjacent simple root leaves it unchanged, differing by a multiple 
of 0.8

So, begin with the standard orthogonal basis of R3,
ε1 = (1,0,0)
ε2 = (0,1,0)
ε3 = (0,0,1)

and from here generate the two vectors, α1 and α2, that will characterize A2, 
α1 = ε1 - ε2 = (1,-1,0) 
α2 = ε2 - ε3 = (0,1,-1)

When these vectors are plotted in the three space that they should be, along with their 
reflections in orthogonal hyperplanes, we have the following “tilted” hexagon. 
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8 Wikipedia “Root systems, Mathematics, Explicit Construction of the Irreducible Root Systems”

http://en.wikipedia.org/wiki/Standard_basis
http://en.wikipedia.org/wiki/Standard_basis
http://en.wikipedia.org/wiki/Reflection_(mathematics)
http://en.wikipedia.org/wiki/Reflection_(mathematics)
http://en.wikipedia.org/wiki/Hyperplane
http://en.wikipedia.org/wiki/Hyperplane
http://en.wikipedia.org/wiki/Permutation
http://en.wikipedia.org/wiki/Permutation
http://en.wikipedia.org/wiki/Coordinates
http://en.wikipedia.org/wiki/Coordinates
http://en.wikipedia.org/wiki/Transposition_(mathematics)
http://en.wikipedia.org/wiki/Transposition_(mathematics)
http://en.wikipedia.org/wiki/Permutation_group
http://en.wikipedia.org/wiki/Permutation_group


These vectors will play an important role when we discuss the combinatoric properties 
of the root system in the next section.

Note that the hexagon in 3 space as depicted above and below... is really a 
permutahedron of order 3. See below, from wikipedia.
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Fig 5: Tilted Hexagon. Note that each of the vectors is one of 6 ways to choose two objects 
from a set of three with ordering. Each point (vector terminal) corresponds to a linear 
combination (or subtraction) of two orthogonal basis vectors.

Fig 5.1: The permutohedron of 
order 3 is a hexagon, filling the 
cross section of a 2×2×2 cube.

http://en.wikipedia.org/wiki/Hexagon
http://en.wikipedia.org/wiki/Hexagon
http://en.wikipedia.org/wiki/Cube
http://en.wikipedia.org/wiki/Cube


4. Connection to Combinatorics

Fig 6 illustrates the three infinite hyperplanes that correspond to the closed system of 
mirrors (a.k.a. root system) that is generated by two vectors 2π/3 apart in 2-space. The 
space is partitioned into six chambers, and we can name one of them, WLOG, the 
identity (or fundamental) chamber. From here we find some very interesting properties. 
Consider the reflections themselves, through the hyperplanes, and consider them as Si, 
where i: 1 or 2. Note that, from above, reflection are involutions, that is,
 (s1)(s1) = 1 = (s2)(s2). Reflection in a plane twice results in the original. 
 (s1)(s2)(s1) = (s2)(s1)(s2) and
 (s1)(s2) =/= (s2)(s1).

Now consider any combination of reflections and any resulting element will be in one of 
the six chambers. Further, note the following property of the movements themselves.

sαβ = β - (2β・α)(α・α)^-1・α  (reflection formula)
Sα1(a,b,c) = (a,b,c) - 2((a,b,c)・α)(α・α)^-1・α 
Sα1(a,b,c) = (a,b,c) - 2((a,b,c)・(1,-1,0))((1,-1,0)・(1,-1,0))^-1・(1,-1,0)
Sα1(a,b,c) = (a,b,c) - 2(a-b)(1,-1,0)
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Sα1(a,b,c) = (a,b,c) + (b-a,a-b,0)
Sα1(a,b,c) = (b,a,c)

That is, reflection in Hα1 is a permutation of the coordinates. If we continue analyzing 
the rest we get the following;

Sα1(a,b,c) = (b,a,c)
Sα2(a,b,c) = (a,c,b)
Sα1Sα2(a,b,c) = (c,a,b)
Sα2Sα1(a,b,c) = (b,c,a)
Sα1Sα2Sα1(a,b,c) = (c,b,a)
Sα1Sα1(a,b,c) = (a,b,c)

Which is simply the group of permutations of three elements. 

When we extend ourselves up one dimension, to 4, and begin to discuss A3, we would 
move from the 6 permutations of 3 elements, to the 24 permutations of 4 elements. 
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5. How to Generate A3

Remember, to generate A3 we are working in 4-space. Instead of using the geometrical 
approach we had before, we use the mechanical algebra to help us, guided by 
geometryʼs intuition. We simply follow the steps as before: 

If we take the orthogonal basis of R4, and label them 
Basis

ε1

ε2
ε3
ε4

x y z w
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Then to generate A3 we take only the linear monic combinations of the εi. Labeling 
them as 
Basis
e1-e2

e1-e3

e1-e4

e2-e3

e2-e4

e3-e4

Labels x1 x2 x3 x4
a 1 -1 0 0

b 1 0 -1 0

c 1 0 0 -1

d 0 1 -1 0

e 0 1 0 -1

f 0 0 1 -1

These 6 ʻvectorsʼ will be the positive roots and those along with the negatives of these is 
A3. From here we can plot the vectors in 3 space, but we need to find the angles in 
between them to plot them (this is how to move from 4 space to 3 space). We will make 
use of the dot product, where

9 will give us our θ.
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9 Wikipedia “Dot Product”



ab
ac
ad
ae
af
bc
bd
be
bf
cd
ce
cf
de
df
ef

x·y x·y / 2 α (radians) α (degrees)
1 0.5 pi/3 60
1 0.5 pi/3 60

-1 -0.5 2pi/3 120
-1 -0.5 2pi/3 120
0 0 pi/2 90
1 0.5 pi/3 60
1 0.5 pi/3 60
0 0 pi/2 90

-1 -0.5 2pi/3 120
0 0 pi/2 90
1 0.5 pi/3 60
1 0.5 pi/3 60
1 0.5 pi/3 60

-1 -0.5 2pi/3 120
1 0.5 pi/3 60

These are the relations between the 6 vectors in A3, and now we can construct A3 in 3 
dimensions instead of 4. We may choose our start point arbitrarily,
a = (0,0,1). We then know that -a = (0,0,-1). 
From here we know that a·f = 0. Then, again WLOG we can choose 
f = (1,0,0) and -f = (-1,0,0). 
Now we know that a·c = f·c = 1. The vector that satisfies this condition (as well as 
monic length) is 
c = (1/2, √2/2, 1/2). Then -c = (-1/2, -√2/2, -1/2). 
I also know that a•b = 1/2 and f•b = -1/2. And thus have
 b= (-1/2, √2/2, 1/2) and -b = (1/2, -√2/2, -1/2).
Further, a•d = f•d = -1. Then we have
d = (-1/2, √2/2, -1/2) and -d = (1/2, -√2/2, 1/2)
Lastly we have e, where d•e = c•e = 1/2. Giving us a final vector of
e = (1/2, √2/2, -1/2) and -e = (-1/2, -√2/2, 1/2).
Hereʼs the table.

a
b
c
d
e
f

x1 x2 x3
0 0 1

-1/2 √2/2 1/2
1/2 √2/2 1/2
-1/2 √2/2 -1/2
1/2 √2/2 -1/2
1 0 0
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Fig 7.1: The Root System A3, as constructed by 
the angles derived earlier.



6. The A3 Hyperplane Arrangement

From here, we cut the 3-space into halves using the 6 planes that are uniquely 
determined by these vectors. Here is the table

Pa

Pb

Pc

Pd

Pe

Pf

And when the planes are mapped out, the resulting R3 space looks like this (done in 
Grapher, available on macintosh):
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Fig 7.2: Coxeter Complex for A3. The 6 planes partition 3 space 
into halves. Notice that the space is partitioned into 24 chambers!



The A3 complex is analogous to Fig 6, where A3 partitions 3-space into 24 chambers, 
A2 partitioned 2-space into 6 chambers. Note the chambers are infinite. Note the 
chambers, as a product of the mirrors, all meet at the origin. When we restrict ourselves 
solely to a single chamber, we get what we will call an alcove. If we were to model this 
into Sketchup, we would find a shape that looks like this: 

One can see where this shape will ʻfitʼ into the hollow of the planes. But why are we 
allowed to bound the alcove from an infinite chamber into a finite alcove? We discuss 
this in the next section, tessellation.
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Fig 8: An A3 alcove, one of 24, the coordinates are displayed to help  other 
modelers, and provide intuition about where in space these vertices lie.



7. Tessellation

Starting with definitions, A tessellation or tiling of the plane is a pattern of plane figures 
that fills the plane with no overlaps and no gaps. 10 It may perhaps be best to illustrate 
this with illustrations. We will begin as before with A2 and graduate to A3. We see that 
A2 partitions the infinite euclidean space into 6 chambers, using three planes of 
reflection.

Now, imagine if we were to ʻcopyʼ one of the hyperplanes, and ʻpasteʼ it one unit north. 
But when you do that, you inevitably copy s1 and s2 northwards as well. If we restrict 
ourselves to viewing only one chamber we see the following result of our copy and 
paste:
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10 Wikipedia “Tessellation” Non-Disambiguation Page

Fig 9:  A2 partitions the Euclidean space into 6 chambers, 
using three hyperplanes, labelled here as s0, s1 and s2.

http://en.wikipedia.org/wiki/Plane_(mathematics)
http://en.wikipedia.org/wiki/Plane_(mathematics)
http://en.wikipedia.org/wiki/Plane_figure
http://en.wikipedia.org/wiki/Plane_figure


From here, we are prepared to 
move to A3... using the same 
method as before, we will arrive 
at a final tessellation of 3-space 
that looks like this:
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Fig 10: Tessellation of R2 using A2. 
Also known as tessellation by 
equilateral triangles (note the pi/3 
angles from A2). This is how we can 
restrict  ourselves to an alcove 
instead of a chamber, as mentioned 
earlier.

Fig 11: Tessellation of a chamber of  A3 by A3 
alcove. Four layers are presented here. The 
alcoves (and their reverses) are dense in space.



An interesting property to note about the A3 tessellation is that when ʻmoddedʼ we can 
retrieve the tessellation of R2 by A2. Geometrically, we need only view the tessellation 
from the right angle...

This is not always the case however, as viewed from the final appropriate angle, we get 
the following image...
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Fig 12: Tessellation of R3 by A3, 
viewed particularly, shows the 
tessel lat ion of R2 by A2, i .e. 
tessellation of  the plane by equilateral 
triangles.

Fig 13: Tessellation of R3 by A3, 
viewed particularly, shows a 
different result once modded not 
in S1,  or S3, but in S2. The 
reasoning will become apparent 
in the combinatoric section of 
the permutahedron.



8. Introducing the Permutahedron

Letʼs take a step back and deal with some shapes for awhile. From wikipedia we have 
that 

“In mathematics, the permutohedron of order n (also spelled permutahedron) is an 
(n − 1)-dimensional polytope embedded in an n-dimensional space, the vertices of 
which are formed by permuting the coordinates of the vector (1, 2, 3, ..., n).”11

The permutahedron has 24 vertices and 12 faces. Interesting for the purposes of 
graphing the permutahedron is that it is uniquely determined by the 6 square faces. 
That is every vertex is a part of exactly one square. Using simple algebra and geometry 
then, we may construct a permutahedron defined by its squares.

(The points are scaled to result in a permutahedron with all lengths of one.)

The resulting shape will look like this:

Furthermore, when the tessellation from above is combined with the permutahedron...
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11 Wikipedia “Permutahedron”

Fig 14: The permutahedron, 
dep ic ted here a t 50% 
opacity to show depth and 
the reverse side. Note that 
in the available model,  all 
sides have been scaled to 1.

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Polytope
http://en.wikipedia.org/wiki/Polytope
http://en.wikipedia.org/wiki/Permutation
http://en.wikipedia.org/wiki/Permutation
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Fig 14.2: The permutahedron combined with the 
tessellation chamber from earlier in R3, reveals 
the fact that the chambers in R3, and the mirrors 
that  generated them, is a closed system of mirrors 
for the permutahedron. They are the mirrors of 
symmetry, and by modding by all 3 mirrors of 
symmetry, a single point (the trivial subgroup) can 
be obtained.



9. Combinatorics and the Permutahedron

The permutahedron as mentioned earlier has some combinatoric properties, mirroring 
those of the hexagon that we saw earlier in the case of A2. Firstly, there exists three 
ʻnotationsʼ for the points on the permutahedron, corresponding to one line permutation 
notation, cycle notation and generator notation. The table below, combined with the map  
above, characterizes the locations and labels required of a permutahedron with all 3 
notations engraved.
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Fig 15: The permutahedron.



One Line Cyclic Two Cycles Breakdown Generators Generators 
Unordered

1234
2134
3214
4231
1324
1432
1243
3124
2314
1423
1342
4213
3241
4132
2431
2143
3412
4321
4123
2341
3142
2413
3421
4312

( ) ( ) ( ) 0 000
(12) (12) (12) 1 100
(13) (13) (23)(12)(23) 212 120
(14) (14) (34)(12)(23)(34)(12) 31231 113
(23) (23) (23) 2 010
(24) (24) (23)(34)(23) 232 012
(34) (34) (34) 3 001
(123) (13)(12) 2121 2121 110
(132) (12)(13) 1212 1212 020
(234) (24)(23) 2322 23 011
(243) (23)(24) 2232 32 002
(134) (14)(13) 31231212 31231212 121
(143) (13)(14) 21231231 21231231 023
(124) (14)(12) 312311 3123 112
(142) (12)(14) 131231 131231 013
(12)(34) (12)(34) 13 13 101
(13)(24) (13)(24) 212232 2132 022
(14)(23) (14)(23) 312312 312312 123
(1234) (14)(13)(12) 312312121 312312121 111
(1432) (12)(13)(14) 121231231 121231231 003
(1243) (13)(14)(12) 212312311 2123123 102
(1342) (12)(14)(13) 131231212 131231212 021
(1423) (13)(12)(14) 212131231 212131231 023
(1324) (14)(12)(13) 312311212 3123212 122

Where s1 = (12) s2 = (23) and s3 = (34).

Note that s1, s2 and s3 will generate the group S4.

When combined with the original permutahedron in Fig 15, we would be able to build a 
translation permutahedron... as depicted here and available on the google sketchup 
warehouse.
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The permutahedron can be ʻcutʼ along these axes in the same way that the group S4 
can be ʻmoddedʼ by removing certain generators or pairs of generators. The following 
diagrams and captions will display the most entertaining ways this can occur.
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Fig 16: The permutahedron with all 3 notations, 
together with the intersections of  the mirrors of 
symmetry. This is effectively group division by the 
entire group. That is, each element is its own 
representative.
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F ig 17 : Cu t t i ng the shape in to 
equivalence classes modulo S2. Six 
permutations remain, with S3 properties.

Fig 18: The equivalence class 
represented by the identity. Four 
elements comprise this equivalence 
class modulo S2. This is or is 
isomorphic to S4 /  <S1,S2> and S4 / 
<S2,S3>



Fig 18: The equivalence class 
represented by the identity. Four 
elements comprise this equivalence 
class modulo S2. By Lagrangeʼs 
theorem. 
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Fig 19 & 20: The representatives of 
S4 after modulo s2, the second 
g e n e r a t o r . T h e r e a r e f o u r 
representatives,  corresponding to four 
equivalence classes of six elements 
each.  Pictured left is the equivalence 
class represented by the identity 
element.

S4 / <S1,S3>
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Fig 20 & 21: The representatives of 
S4 after modulo s2 and s3.  There 
remain only two representatives, 
each with 12 elements. Pictured left 
is the equivalence class that is 
represented by the identity element.

S4 / <S1> OR
S4 / <S2> OR

S4 / <S3>    
     



10. Dual Shapes

From wikipedia, we have the textbook definition of dua-shapes. In geometry, polyhedra 
are associated into pairs called duals, where the vertices of one correspond to the faces 
of the other. The dual of the dual is the original polyhedron. The dual of a polyhedron 
with equivalent vertices is one with equivalent faces, and of one with equivalent edges 
is another with equivalent edges. So the regular polyhedra — the Platonic solids and 
Kepler-Poinsot polyhedra — are arranged into dual pairs, with the exception of the 
regular tetrahedron which is self-dual.
Duality is also sometimes called reciprocity or polarity.12

Duality is something I have preferred to be illustrated.

Most interestingly, we have that dual shapes can be derived geometrically by a process 
of ʻcutting cornersʼ please see below. 
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12 http://en.wikipedia.org/wiki/Dual_polyhedron

Fig 22: Octahedron inscribed within the cube. The 
octahedron and cube are duals of one another; 
the vertices of one correspond to the midpoint of 
each face of the other.

http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Polyhedron
http://en.wikipedia.org/wiki/Polyhedron
http://en.wiktionary.org/wiki/vertex
http://en.wiktionary.org/wiki/vertex
http://en.wikipedia.org/wiki/Face_(geometry)
http://en.wikipedia.org/wiki/Face_(geometry)
http://en.wikipedia.org/wiki/Platonic_solid
http://en.wikipedia.org/wiki/Platonic_solid
http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra
http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra
http://en.wikipedia.org/wiki/Tetrahedron
http://en.wikipedia.org/wiki/Tetrahedron
http://en.wikipedia.org/wiki/Dual_polyhedron#Self-dual_polyhedra
http://en.wikipedia.org/wiki/Dual_polyhedron#Self-dual_polyhedra
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Fig 23 & 24: Truncation sequence of the cube to the octahedron 
reveals an intuitive way of transforming one into the other. Notice 
that the permutahedron is in this system... as it is essentially a 
truncated octahedron, see figure below. Above credit to wikipedia 
(http://en.wikipedia.org/wiki/Dual_polyhedron).

http://en.wikipedia.org/wiki/Dual_polyhedron
http://en.wikipedia.org/wiki/Dual_polyhedron


Our familiar permutahedron from earlier, is, when looked at properly very easy to 
picture, as it is a truncated octahedron. From this point, I will explain exactly how to 
create these shapes in sketchup, but with the right instructions, these methods can be 
applied to any AUTOCAD program. 
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11. How to Model the Permutahedron

Firstly, navigate google sketchup’s opening menus (choosing metric engineering for this 
guide) until we reach this point.

From here, make sure the select tool is being used (its the cursor in the top left) and 
highlight the dummy, once fully highlighted, delete (hit delete) the ambisexual model 
and we now have a clean slate to work with.

 The permutahedron is an easy shape to model, once we notice two facts about it. 
Firstly, that it is merely a truncated (pointy ends cut off) octahedron. This shape consists  
of 8 hexagonal faces, and 6 squares. Further, the permutahedron is uniquely 
determined by its square faces, that is, every vertex of the shape is, lucky for us, part of 
one and only one square face. From here we know that we need only model the 
squares of the shape, and allow sketchup to do the rest of the work.

 For purposes of generality, our permutahedron will have all edges of unit length. 
Further, we will rotate the construction so as to keep the coordinates intuitive.
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 Call the six squares of the permutahedron by their positions relative to the 
red(solid axis). If red solid is the ‘front’ square, F, then we can label the squares Back, 
Left, Right, Up and Down.

 A square of edge length one in R2 with midpoint at the origin, and points on the 
axes (this is important later) will have coordinates (±√2/2,0) and (0, ±√2/2).

 When we extend this to our 3d example we have our front square having 
coordinates (±√2/2,y,0) and (0,y, ±√2/2). We now need to determine the y value that will 
assure our hexagons a unit length as well.

 Our answer comes from similar triangles, and we find the y value to be √2. To 
generalize, we now take the general coordinates method to be ±√2/2, ±0 and ±√2. 
(Where take all possible combinations and permutations of these values (without 
repetition) and it will determine the 24 vertices of the permutahedron, corresponding to 
the 24 vertices of the 6 square faces.)

 To draw this in sketchup, we will build a spider-frame and connect the terminal 
points. In sketchup, click the draw line tool (the pencil) and click the origin. This sets the 
origin as the initial point of the first vector you are about to draw. In the bottom right 
where it says ‘measurements’ you are now free to type [0.707,1.414,0] (corresponding 
to [√2/2,√2,0]) for example. (Sketchup seems to prefer decimals, luckily, this will not 
have any planar effects). Creating the full spider frame, you will end up with this spiky 
thing:

Now sketchup is going to do most of the work from here on. Take a moment to navigate 
the object. To pitch and yaw, use the button depicted by blue arrows curved around 
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each other (next to the hand button.) As you orient around the object, try to visualize 
where the six squares will go. Hold down shift in this mode if you want to shift the 
camera, as if you were walking left or right. After finding a comfortable angle, click the 
draw tool, and click the terminal point of one of the vectors you have drawn. Now draw a 
line connecting that point with another of the same square, preferably not the diagonal. 
Continue this until you get this shape. (If you have any doubts about the vectors you are  
connecting, the measurements text field in the bottom right will ALWAYS read 1m when 
you are doing it right.) Continue this process until you have completed all six squares. It 
should look like this:

Now connect the vertices of each square to each other, being careful to only use unit 
length edges. (This isnt necessary, but for cleanliness of the final product)
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12. How to Model the Permutahedron Dual

Dual shapes have some very interesting properties that will make our job of modeling 
the dual permutahedron very easy. As an idea of the shape, the dual of an object has 
vertices for faces and faces for vertices of its partner. That is, if there is a cube, which 
has 6 faces and 8 vertices, then its dual is the octahedron, which has 8 faces, and six 
vertices. Then, the permutahedron’s dual (the dual) has 14 vertices and 24 faces. 
Furthermore, the nature of the face is preserved under duality. A hexagon corresponds 
to a six edged vertex. A square will correspond to a four edged vertex. Further, the 
midpoint of every face of the permutahedron corresponds to a vertex of the dual, 
therefore the dual is very easy to map once we have mapped the permutahedron. Just 
using the midpoint formula gives us the coordinates:
(±√2,0,0)(0,±√2,0)(0,0,±√2) and (±3√2/2, ±3√2/2, ±3√2/2). 

Mapping these out in similar fashion as the permutahedron gives us our spider frame:

And connecting as before, with the intuition that the shape resembles pyramids.
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