"An Introduction to Sage" or "Why I learned to stop worrying and love py-thon"

Mike Zabrocki York University

Sage is a computer algebra system based on python which ties together many specialized open source mathematics software packages.

Sage is a computer algebra system based on python which ties together many specialized open source mathematics software packages.

ATLAS	R
Symmetrica	Jmol
Pari	NetworkX
Maxima	PALP
Singular	Cephes
Numpy	GAP
	+many more

Sage is a computer algebra system based on python which ties together many specialized open source mathematics software packages.

Symmetrica	R
ATLAS	Jmol
Pari	NetworkX
	PALP
Maxima Numerov	GAP
Numpy Singular	Cephes
Ungalar	+many more

Sage is a computer algebra system based on python which ties together many specialized open source mathematics software packages.

What Sage does well

- fast/vast libraries of mathematical tools
- share mathematics
- free and easy to access
- based on python

What Sage does well

- fast/vast libraries of mathematical tools
- share mathematics
- free and easy to access
- based on python

http://modular.math.washington.edu/sage

»Every free computer algebra system I've tried has reinvented many times the wheel without being able to build the car.«

What Sage does well

- fast/vast libraries of mathematical tools
- share mathematics
- free and easy to access
- based on python

'zero knowledge' answer key

Step 1: teach students basic commands of Sage such as taking a coefficient in a taylor series or numerical integration

Step 2: If answer is function f(x) then give as answer key the coefficient of x^{100} in the taylor expansion

example:

What is the generating function for the number of solutions to the equation

$$x_1 + x_2 + 2x_3 + 3x_4 + x_5 = n$$

with $x_i \ge 0$ and where $x_1 + x_2 + 2x_3$ is even and $x_1 + 2x_3$ is less than or equal to 10, and $x_4 \ne x_5$? Answer key: the number of solutions with n = 100 is 23779

share mathematics - in textbooks

excerpt from k-Schur Functions and Affine Schubert Calculus by Lam, et al.

where the element s_i represents the permutation which interchanges i and i + 1. We will refer to the left cosets of \tilde{S}_n/S_n as affine Grassmannian elements and they will be identified with their minimal length coset representatives, that is, the elements of $w \in \tilde{S}_n$ such that either w = id or s_0 is the only elementary transposition such that $\ell(ws_0) < \ell(w)$.

Remark 1.7. The definition of affine Grassmannian elements are the special case of a more general definition. The *l*-Grassmannian elements are the minimal length coset representatives of \tilde{S}_n/S_n^l where S_n^l is the group generated by $\{s_0, s_1, s_2, \ldots, s_{n-1}\}\setminus\{s_l\}$ and the affine Grassmannian elements are the 0-Grassmannian elements. Due to the cyclic symmetry of the affine type A Dynkin diagram, these constructions are of course all equivalent.

Sage Example 1.8. We can create the affine symmetric group and its generators in SAGE as

```
sage: W = WeylGroup(["A",4,1])
sage: S = W.simple_reflections()
sage: [s.reduced_word() for s in S]
[[0], [1], [2], [3], [4]]
```

For a given element, we can ask for its reduced word or create it from a word in the generators and ask whether it is Grassmannian:

```
sage: w = W.an_element(); w
[ 2 0 0 1 -2]
[ 2 0 0 0 -1]
[ 1 1 0 0 -1]
[ 1 0 1 0 -1]
[ 1 0 0 1 -1]
sage: w.reduced_word()
[0, 1, 2, 3, 4]
sage: w = W.from_reduced_word([2,1,0])
sage: w.is_affine_grassmannian()
True
```

share mathematics - through worksheets

Version 5.12 The Sage Notebook	admin Toggle Home Published Log Settings Help Report a Problem Sign out
the meaning of life, the universe and everything last edited Nov 3, 2013, 9:32:59 AM by admin	Save Save & quit Discard & quit
File Load worksheet from a file New worksheet Save worksheet to a file Print Rename worksheet Copy worksheet Delete worksheet evaluate	Print Worksheet Edit Text Revisions Share Publish

share mathematics - through collaborations

share mathematics - by contributing to Sage

Sage Days : turning first time users into developers

What Sage does well

- fast/vast libraries of mathematical tools
- share mathematics
- \cdot free and easy to access
- based on python

Why one should use sage

- fast/vast libraries of mathematical tools
- share mathematics
- free and easy to access
- based on python

1 PYTHON! YOU'RE FLYING! HOW? I DUNNO ... I JUST TYPED DYNAMIC TYPING? import antigravity WHITESPACE? THAT'S IT? COME JOIN US! PROGRAMMING ... I ALSO SAMPLED I LEARNED IT LAST 15 FUN AGAIN! EVERYTHING IN THE NIGHT! EVERYTHING IT'S A WHOLE MEDICINE CABINET IS SO SIMPLE! NEW WORLD FOR COMPARISON. UP HERE! HELLO WORLD IS JUST print "Hello, world!" BUT I THINK THIS BUT HOW ARE IS THE PYTHON. YOU FLYING?

Sage is based on python (a very nice language) and has syntax close to mathematics

- experts
- beginners

- experts doing high efficiency specialized computation
- beginners who are turned off by user friendly issues

- experts doing high efficiency specialized computation
- beginners who are turned off by user friendly issues

xkcd.com

xkcd.com

- experts doing high efficiency specialized computation
- · beginners who are turned off by user friendly issues

for i from 1 to 10: print i

SyntaxError: invalid syntax

TMI!

for from 1 to 10: print i

'for i from ...' Bad syntax in for loop. <u>Help on for loops</u>

for i in range(10):
 print factor(x^i-1)

```
for i in range(10):
    print factor(x^i-1)
```

evaluate

```
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    File "_sage_input_9.py", line 10, in <module>
    exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_
    File "", line 1, in <module>
    File "/private/var/folders/_3/qq_ptsxd0bd645cgmgt_ssrm0000gn/T/tmpAkQLpF/__code__.py", line 3, in <module>
    exec compile(u'for i in range(_sage_const_10 ):\n print factor(x**i-_sage_const_1 )
    File "", line 2, in <module>
    File "/Applications/sage/local/lib/python2.7/site-packages/sage/rings/arith.py", line 2478, in factor
    return n.factor(**kwds)
    File "expression.pyx", line 8466, in sage.symbolic.expression.Expression.factor (sage/symbolic/expression.cpp
    File "polynomial_element.pyx", line 2892, in sage.rings.polynomial.polynomial_element.Polynomial.factor (sage
    ValueError: factorization of 0 not defined
```

```
for i in range(10):
    print factor(x^i-1)
```

evaluate

```
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    File "_sage_input_9.py", line 10, in <module>
    exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_
    File "", line 1, in <module>
    File "/private/var/folders/_3/qq_ptsxd0bd645cgmgt_ssrm0000gn/T/tmpAkQLpF/__code__.py", line 3, in <module>
    exec compile(u'for i in range(_sage_const_10 ):\n print factor(x**i-_sage_const_1 )
    File "", line 2, in <module>
    File "/Applications/sage/local/lib/python2.7/site-packages/sage/rings/arith.py", line 2478, in factor
    return n.factor(**kwds)
    File "expression.pyx", line 8466, in sage.symbolic.expression.factor (sage/symbolic/expression.cpp
    File "polynomial_element.pyx", line 2892, in sage.rings.polynomial.polynomial_element.Polynomial.factor (sage/symbolic.expression.cpp)
    File "polynomial_element.pyx", line 2892, in sage.rings.polynomial.polynomial_element.Polynomial.factor (sage/symbolic.expression.polynomial_element.polynomial.factor (sage/symbolic.expression.polynomial.polynomial_element.polynomial.factor (sage/symbolic.expression.polynomial.polynomial_element.polynomial.factor (sage/symbolic.expression.polynomial.polynomial_element.polynomial.factor (sage/symbolic.expression.polynomial.polynomial_element.polynomial.factor (sage/symbolic.expression.polynomial.polynomial.factor (sage/symbolic.expression.polynomial.polynomial.factor (sage/symbolic.expression.poly
```

WTF?

for	i in range(10): print i
evalua	te
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

Demonstration

1. How to get started

2. How to get help

3. How to do something cool

www.sagemath.org

The new <u>Sagemath Cloud</u> is in Beta Test. Work with Sage, or run Python, R, GAP, M2 and more in the Cloud.

Welcome!

Sage is a different approach to mathematics software.

The Sage Notebook

With the Sage Notebook anyone can create, collaborate on, and publish interactive worksheets. In a worksheet, one can write code using Sage, Python, and other software included in Sage.

General and Advanced Pure and Applied Mathematics

Use Sage for studying calculus, elementary to very advanced number theory, cryptography, commutative algebra, group theory, graph theory, numerical and exact linear algebra, and more.

Use an Open Source Alternative

By using Sage you help to support a viable open source alternative to Magma, Maple, Mathematica, and MATLAB. Sage includes many high-quality open source math packages.

Use Most Mathematics Software from Within Sage

Sage makes it easy for you to use most mathematics software together. Sage includes GAP, GP/PARI, Maxima, and Singular, and dozens of other open packages.

Use a Mainstream Programming Language

You work with Sage using the highly regarded scripting language Python. You can write programs that combine serious mathematics with anything else.

Acknowledgement

The Sage Notebook is based upon work supported by the National Science Foundation under grants DMS-0821725, DMS-1020378, DMS-0713225, DMS-0555776, DMS-0545904, DMS-0838212, DMS-0757627, DUE-1020378, DUE-1022574, DMS-1015114, etc. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. See also http://sagemath.org/development-ack.html.

Sign into the Sage Notebook v5.11

Username		
Password	-	
Remember m	ne	
Sign in		
Browse published (no login required	l Sage worksheel)	ts
Google	YAHOO!	- OpenD
🗎 💀 🖸 🔟 🖸		•

Welcome to Sage! You can create a new worksheet, view published worksheets, or read the documentation.

Rename worksheet	×
Please enter a name for this worksheet.	_
Rename	_

www.sagemath.org

- BitTorrent is a P2P protocol for fast and reliable downloads of huge files over the Internet (read more).
- Metalinks provide fast, stable and resumeable downloads via a download client (read more).

www.sagemath.org

RSS · Blog · Trac · Report Bugs · Wiki · Ask · Interact · Search: Online: sagenb , KAIST, Cloud · SageCell or Download · Code: open source v5.12 (2013-10-09) · Start - Language +

Home Tour Support Library Download Development Links

Help and Support

- Sage standard documentation
- Further resources
- Support and discussion groups
- uSage User Groups

Sage standard documentation

The Sage standard documentation consists of the following documents, in both HTML and PDF versions.

View the online documentation.

- A Tour of Sage, PDF a brief tour of some of Sage's features
 - Sage en quelques mots (Français), PDF
- Tutorial (Printed & Bound), PDF information for beginners, recommended
 - Sage Tutorial (Deutsch), PDF
 - Sage thematische Anleitungen (Deutsch), PDF
 - Manual de Sage para principiantes (Español)
 - Introduccion: Matemáticas Elementales con Sage (Español)
 - Tutoriel Sage (Français), PDF
 - учебное пособие Sage (русский язык), PDF
 - Persian Tutorial (Farsi): آموزش فارسی (PDF) (DOCX)
- Thematic Tutorials, PDF
 - Introduction to Sage
 - Logging on to a Sage Server and Creating a Worksheet (PREP)
 - Introductory Sage Tutorial (PREP)
 - Tutorial: Using the Sage notebook, navigating the help system, first exercises
 - Sage's main tutorial

- Calculus and plotting
 - Tutorial: Symbolics and Plotting (PREP)
 - Tutorial: Calculus (PREP)
 - Tutorial: Advanced-2D Plotting (PREP)
- Algebra
 - Linear Programming (Mixed Integer)
 - Group Theory and Sage
 - Lie Methods and Related Combinatorics in Sage
- Number Theory
 - Number Theory and the RSA Public Key Cryptosystem
 - Introduction to the p-adics
- Combinatorics
 - Introduction to combinatorics in Sage
- Algebraic Combinatorics
 - Tutorial: Symmetric Functions
 - Lie Methods and Related Combinatorics in Sage
 - Abelian Sandpile Model
- Programming and Design
 - Tutorial: Sage Introductory Programming (PREP)
 - Tutorial: Programming in Python and Sage
 - Tutorial: Comprehensions, Iterators, and Iterables
 - Tutorial: Objects and Classes in Python and Sage
 - Functional Programming for Mathematicians
- Modeling Mathematics on a computer
 - How to implement new algebraic structures in Sage
 - Elements, parents, and categories in Sage: a (draft of) primer
 - Implementing a new parent: a (draft of) tutorial
- FAQ, PDF frequently asked questions with answers
- Reference Manual, PDF details about built-in functions
- Installation Guide, PDF helps you install Sage (download)
- Developer's Guide, PDF guidelines for current and prospective Sage developers
- Constructions (Printed & Bound), PDF describes how to explain specific mathematical objects to Sage
- Numerical Sage, PDF how to do numerical computing with Sage
- Explicit Methods in Number Theory, PDF computing with number fields and modular forms

You can download the entire standard documentation as a compressed file.

order [

$$egin{array}{ll} f(x) &= e^{-x}\sin{(x)}\ \hat{f}(x;0) &= x+\mathcal{O}(x^2) \end{array}$$

