


Gems of Algebra:
 The secret life of the
  symmetric group

Some things that you may not 
have known about permutations.



Permutation of 

= the set of permutations of 



Permutation of 

= the set of permutations of 



Two line notation

Example



Two line notation

Example



One line notation (word of a permutation)

Example two line notation:



One line notation (word of a permutation)

Example one line notation:



Cycle notation
A cycle



Cycle notation
A cycle

means



Cycle notation
A cycle

means

where each of the cycles contain disjoint sets of integers

This representation is not unique, the cycles may be written
in any order and any number in the cycle can be listed first.
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will be another permutation

The definition of this permutation will be

will sometimes be written as
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The symmetric group contains every group
of order n as a subgroup

The group of permutations is called the 
symmetric group

are the elements of a group of order n

Then these corresponding elements will multiply in the
symmetric group just as they do in their own group.
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Generators and relations

generateThe elements
where these elements are characterized by the relations



(Coxeter)  The set of permutations can be realized
as compositions of reflections across hyperplanes
in          which divide the space into       chambers.

fundamental
chamber















Hyperplanes of representing



From this perspective we have the notion of the length
of a permutation.

The length of a permutation     is the length of the smallest
word of elements          that can be used to represent     .



Consider:



Consider:

Example:



where

and

is called an Eulerian ‘statistic’
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The length of a permutation is equal to the
the number of inversions in the permutation.

number of inversions left of: 0 0 0 0 3 5 6 51
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Weak order

We may ‘draw’ this with a graph (vertices and edges) so
that the vertices are permutations and there is an edge between
two permutations if 

To create the following images we also put some
additional restrictions
1. the level will depend on the length of the permutation
2. the color of the edge will determine the position that
      is changing so that every permutation will have one
      edge of each color. 
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Note that all faces of the permuta-hedrons are 
made up of two types of facets.
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213
231
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The following permutations of size n=3, 4

1234
1243
1324
1342
1423
2134
2143

2314
2341
2413
3124
3142
3412
4123



A new way of looking at permutations?


