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of matrices.

(DE) (12) (DR)G) (12)3) (123)

I 1 1

2 0 -1

1 -1 1

(D2)B)4) (12)(3)(4) (12)(34) (123)(4) (1234)

1 1 1 1

1 -1 0 -1

O 2 -1 O

0




The representation theory of the symmetric group revisited

WA ging E}(M(n_lul’u))@m“ SA[Xn] — Zrkugu[Xn]

i u

symmetric group characters are evaluations of some functions at eigenvalues
of matrices.



The representation theory of the symmetric group revisited

WA i'g,inz E}(M(’n—WLM))@UM SA[Xn] — Zrkugu[Xn]

i u

symmetric group characters are evaluations of some functions at eigenvalues
of matrices.




Connection with the partition algebra

PulXn] = Z X)\ ()52 [ X



Connection with the partition algebra

Z X)\(/L)SA[XH]

A=k

Z X P () ()37 [ X n]
A M<K

partition algebra - Martin and Jones from 90’s,

Halverson, Ram, Benkart from 2000’s



Connection with the partition algebra

Pu [Xn] — ZX)\(M)SA[XR]
Ak
= Z X P () ()37 [ X n]
A\ <K
partition algebra - Martin and Jones from 90’s,

Halverson, Ram, Benkart from 2000’s

o O O O S = =[]




Connection with the partition algebra

PulXn| = Z X/\ (1) sx|Xn] The dimenstion of an irreducible module
Nk ) indexed by a partition P is the number of
- Z XBy(n) ()3AXn]  set valued tableaux of shape (n— Al A)
Ai|A<k
partition algebra - Martin and Jones from 90’s,
Py.(n)

Halverson, Ram, Benkart from 2000’s

S O O O O+ +— |[]




Connection with the partition algebra

PulXn| = Z X/\ (1)sa| X0 The dimenstion of an irreducible module
AFE \ ) indexed by a partition P is the number of
- Z XBy(n) ()3AXn]  set valued tableaux of shape (n— Al A)
| A|<k
partition algebra - Martin and Jones from 90’s,
Py(n)

Halverson, Ram, Benkart from 2000’s

A A<k
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Connection with the partition algebra

PulXn| = Z X)‘ (1) sa| X0 The dimenstion of an irreducible module
Nk ) indexed by a partition P is the number of
= > Xp.m) (W3 Xn] | set valued tableaux of shape (n — A\
i A<k
partition algebra - Martin and Jones from 90’s,
Py(n)

Halverson, Ram, Benkart from 2000’s

o O O O O = = | []




The Littlewood-Richardson rule

Sx [ Xnlsu[Xn] = Z CKMSV[Xn]
vilv|=|Al+pl

WA @ W ~ EHW) &

B
213
20212
111 ]1]1]1




The Littlewood-Richardson rule Reduced Kronecker coefficients

S Xnsu[Xn] = Z ChuSv | Xn] Sx[Xn)5uXn] = Zg)\/”&y [ X]
vilv|=|Al+|pl 5

WA WH ~ E}(WW)@CZM M =IALA) & prn=lulp) ~ @(M(n_|7|77))@§>\u7

Y 8
2|3
20212
111 ]1]1]1




Theorem - combinatorial interpretation

g:ul [Xn]g.LbQ [X’n] S g,ue [Xn]gA [Xn] < Spa [Xn]sm Xn] -

+set entries

* column strict and satisfies a lattice condition
* have shape (r,7)/(71)

*content \ in the barred entries

e content [4 in the unbarred entries

* at most one barred entry per cell

* first row cannot have only barred entries

+first row cannot have sets of size 1

—|

—|




gm [Xn]gm [Xn] e

' gue [Xn]§>\ [Xn]

FA

<

Spa [Xn]s,uz [Xn] CT

Spe [ Xn]5A[Xn]




Merci!

Mon cher LaCIM, c’est a ta ton tour

de te laisser parler d’amour....

Bon 501eme anniversaire!



