THE REPRESENTATION THEORY OF THE SYMMETRIC GROUP REVISITED

joint work with Rosa Orellana

6				67		_
2	4	7	\rightarrow	12	4	
1	3	5			3	5

REPRESENTATION THEORY 202

Problem:

Describe the maps from the symmetric group to the general linear group (the possible linear actions of the symmetric group on a vector space).

REPRESENTATION THEORY 202

Problem:

Describe the maps from the symmetric group to the general linear group (the possible linear actions of the symmetric group on a vector space).

1	Basic	c Concepts of Representation Theory	1		4.5	The Dual RSK Correspondence	80
	1.1	Representations and Modules	1		4.6	Representations of Alternating Groups	83
	1.2	Invariant Subspaces and Simplicity	5	5	Symr	netric Functions	96
	1.3	Complete Reducibility	7		5.1	The Ring of Symmetric Functions	96
	1.4	Maschke's Theorem	11		5.2	Other Bases for Homogeneous Symmetric Functions	98
	1.5	Decomposing the Regular Module	13		5.3	Specialization to m Variables	107
	1.6	Tensor Products	19		5.4	Schur Functions and the Frobenius Character Formula	110
	1.7	Characters	22		5.5	Frobenius' Characteristic Function	117
	1.8	Representations over Complex Numbers	29		5.6	Branching Rules	119
2	Perm	nutation Representations	32		5.7	Littlewood–Richardson Coefficients	120
_	2.1	Group Actions and Permutation Representations	32		5.8	The Hook-Length Formula	124
	2.2	Permutations	34		5.9	The Involution $s_{\lambda} \mapsto s_{\lambda'}$	127
	2.3	Partition Representations	39		5.10	The Jacobi-Trudi Identities	129
	2.4	Intertwining Permutation Representations	41		5.11	The Recursive Murnaghan-Nakayama Formula	132
	2.5	Subset Representations	44		5.12	Character Values of Alternating Groups	136
	2.6	Intertwining Partition Representations	46	6	Repre	esentations of General Linear Groups	141
•					6.1	Polynomial Representations	141
3		RSK Correspondence	51		6.2	Schur Algebras	142
	3.1	Semistandard Young Tableaux	51		6.3	Schur Algebras and Symmetric Groups	148
	3.2	The RSK Correspondence	56		6.4	Modules of a Commutant	150
	3.3	Classification of Simple Representations of S_n	68		6.5	Characters of the Simple Representations	153
4	Char	racter Twists	70		6.6	Polynomial Representations of the Torus	155
	4.1	Inversions and the Sign Character	70		6.7	Weight Space Decompositions	158
	4.2	Twisting by a Multiplicative Character	73				
	4.3	Conjugate of a Partition	75	Hin	its and	Solutions to Selected Exercises	160
	4.4	Twisting by the Sign Character	79	Sug	gestion	rs for Further Reading	182
				Ref	erences	·	185
				Ind	ex		189

Representation theory: a combinatorial viewpoint

Author: Amritanshu Prasad.

Publication info: Delhi: Cambridge University Press, 2015.

1	Basi	c Concepts of Representation Theory	1
	1.1	Representations and Modules	1
	1.2	Invariant Subspaces and Simplicity	5
	1.3	Complete Reducibility	7
	1.4	Maschke's Theorem	11
	1.5	Decomposing the Regular Module	13
	1.6	Tensor Products	19
	1.7	Characters	22
	1.8	Representations over Complex Numbers	29

1	Basic	c Concepts of Representation Theory	1
	1.1	Representations and Modules	1
	1.2	Invariant Subspaces and Simplicity	5
	1.3	Complete Reducibility	7
	1.4	Maschke's Theorem	11
	1.5	Decomposing the Regular Module	13
	1.6	Tensor Products	19
	1.7	Characters	22
	1.8	Representations over Complex Numbers	29

* All representations are (up to change of basis) a direct sum of irreducible components

1	Basic	c Concepts of Representation Theory	1
	1.1	Representations and Modules	1
	1.2	Invariant Subspaces and Simplicity	5
	1.3	Complete Reducibility	7
	1.4	Maschke's Theorem	11
	1.5	Decomposing the Regular Module	13
	1.6	Tensor Products	19
	1.7	Characters	22
	1.8	Representations over Complex Numbers	29

- * All representations are (up to change of basis) a direct sum of irreducible components
- * There are only a finite number of possible irreducible components and there are the same number as the number of conjugacy classes

l	Basi	c Concepts of Representation Theory	1
	1.1	Representations and Modules	1
	1.2	Invariant Subspaces and Simplicity	5
	1.3	Complete Reducibility	7
	1.4	Maschke's Theorem	11
	1.5	Decomposing the Regular Module	13
	1.6	Tensor Products	19
	1.7	Characters	22
	1.8	Representations over Complex Numbers	29

- * All representations are (up to change of basis) a direct sum of irreducible components
- * There are only a finite number of possible irreducible components and there are the same number as the number of conjugacy classes
- * The representations are characterized by the "characters"

The Dual RSK Correspondence

Representations of Alternating Groups

80

83

2	Perm	nutation Representations	32	
	2.1	Group Actions and Permutation Representations	32	
	2.2	Permutations	34	
	2.3	Partition Representations	39	
	2.4	Intertwining Permutation Representations	41	
	2.5	Subset Representations	44	
	2.6	Intertwining Partition Representations	46	
3	The l	RSK Correspondence	51	
	3.1	Semistandard Young Tableaux	51	
	3.2	The RSK Correspondence	56	

68

70

70

73

75

79

3.3

4.2

4.3

4.4

Character Twists

Classification of Simple Representations of S_n

Inversions and the Sign Character

Twisting by the Sign Character

Conjugate of a Partition

Twisting by a Multiplicative Character

4.5	The Dual RSK Correspondence	80
4.6	Representations of Alternating Groups	83

2	Perm	nutation Representations	32
	2.1	Group Actions and Permutation Representations	32
	2.2	Permutations	34
	2.3	Partition Representations	39
	2.4	Intertwining Permutation Representations	41
	2.5	Subset Representations	44
	2.6	Intertwining Partition Representations	46
3	The	RSK Correspondence	51
	3.1	Semistandard Young Tableaux	51
	3.2	The RSK Correspondence	56
	3.3	Classification of Simple Representations of S_n	68
4	Char	racter Twists	70
	4.1	Inversions and the Sign Character	70
	4.2	Twisting by a Multiplicative Character	73
	4.3	Conjugate of a Partition	75
	4.4	Twisting by the Sign Character	79

The dimension of an irreducible module indexed by a partition M^{λ} is the number of standard tableaux of shape λ

1.5	The Dual RSK Correspondence	80
1.6	Representations of Alternating Groups	83

2	Perm	nutation Representations	32
	2.1	Group Actions and Permutation Representations	32
	2.2	Permutations	34
	2.3	Partition Representations	39
	2.4	Intertwining Permutation Representations	41
	2.5	Subset Representations	44
	2.6	Intertwining Partition Representations	46
3	The	RSK Correspondence	51
	3.1	Semistandard Young Tableaux	51
	3.2	The RSK Correspondence	56
	3.3	Classification of Simple Representations of S_n	68
4	Char	racter Twists	70
	4.1	Inversions and the Sign Character	70
	4.2	Twisting by a Multiplicative Character	73
	4.3	Conjugate of a Partition	75
	4.4	Twisting by the Sign Character	79

The dimension of an irreducible module indexed by a partition M^{λ} is the number of standard tableaux of shape λ

$$\mathbb{Q}S_n \simeq \bigoplus_{\lambda \vdash n} M^\lambda \otimes M^\lambda$$

.5 The Dual RSK Correspondence 80.6 Representations of Alternating Groups 83

 $span\{\sigma: \sigma \in S_n\} \simeq span\{e_{T_1,T_2}: T_1, T_2 \text{ standard tableaux same shape}\}$

2	Perm	nutation Representations	3
	2.1	Group Actions and Permutation Representations	3
	2.2	Permutations	3
	2.3	Partition Representations	3
	2.4	Intertwining Permutation Representations	4
	2.5	Subset Representations	4
	2.6	Intertwining Partition Representations	4
3	The	RSK Correspondence	5
	3.1	Semistandard Young Tableaux	5
	3.2	The RSK Correspondence	5
	3.3	Classification of Simple Representations of S_n	6
4	Char	racter Twists	7
	4.1	Inversions and the Sign Character	7
	4.2	Twisting by a Multiplicative Character	7
	4.3	Conjugate of a Partition	7
	4.4	Twisting by the Sign Character	7

The dimension of an irreducible module indexed by a partition M^{λ} is the number of standard tableaux of shape λ

$$\mathbb{Q}S_n \simeq \bigoplus_{\lambda \vdash n} M^{\lambda} \otimes M^{\lambda}$$

The Dual RSK Correspondence 80

Representations of Alternating Groups

83

 $span\{\sigma:\sigma\in S_n\} \simeq span\{e_{T_1,T_2}:T_1,T_2 \text{ standard tableaux same shape}\}$

32

32

34

39

41

44

46

51

51

56

68

70

70

73

75

- **Permutation Representations Group Actions and Permutation Representations**
 - **Permutations**
 - **Partition Representations**
 - 2.4 **Intertwining Permutation Representations**
 - 2.5 **Subset Representations**
 - **Intertwining Partition Representations**
- The RSK Correspondence
 - Semistandard Young Tableaux
 - 3.2 The RSK Correspondence
 - Classification of Simple Representations of S_n
- **Character Twists**
 - Inversions and the Sign Character
 - Twisting by a Multiplicative Character 4.2
 - Conjugate of a Partition 4.3
 - Twisting by the Sign Character 4.4

The dimension of an irreducible module indexed by a partition M^{λ} is the number of standard tableaux of shape λ

Robinson-Schensted-Knuth

 $n! = \sum (\# \text{ pairs of std tableaux of shape } \lambda)$ $\lambda \vdash n$

$$5361274 \longleftrightarrow \left(\begin{array}{c|c|c} 5 & & 4 & \\ \hline 3 & 6 & 7 & 2 & 5 & 7 \\ \hline 1 & 2 & 4 & 1 & 3 & 6 \end{array}\right)$$

5	Symmetric Functions		
	5.1	The Ring of Symmetric Functions	90
	5.2	Other Bases for Homogeneous Symmetric Functions	98
	5.3	Specialization to m Variables	10′
	5.4	Schur Functions and the Frobenius Character Formula	110
	5.5	Frobenius' Characteristic Function	11′
	5.6	Branching Rules	119
	5.7	Littlewood–Richardson Coefficients	120
	5.8	The Hook-Length Formula	124
	5.9	The Involution $s_{\lambda} \mapsto s_{\lambda'}$	12
	5.10	The Jacobi-Trudi Identities	129
	5.11	The Recursive Murnaghan-Nakayama Formula	132
	5.12	Character Values of Alternating Groups	130

Sym := 0	$\mathbb{Q}[p_1[X_n], p_2[X_n], p_3[X_n], \dots$.]
	$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell)$	

5	Symmetric Functions			
	5.1	The Ring of Symmetric Functions	9	
	5.2	Other Bases for Homogeneous Symmetric Functions	9	
	5.3	Specialization to m Variables	10	
	5.4	Schur Functions and the Frobenius Character Formula	11	
	5.5	Frobenius' Characteristic Function	11	
	5.6	Branching Rules	11	
	5.7	Littlewood–Richardson Coefficients	12	
	5.8	The Hook-Length Formula	12	
	5.9	The Involution $s_{\lambda} \mapsto s_{\lambda'}$	12	
	5.10	The Jacobi-Trudi Identities	12	
	5.11	The Recursive Murnaghan-Nakayama Formula	13	
	5.12	Character Values of Alternating Groups	13	

$$Sym := \mathbb{Q}[p_1[X_n], p_2[X_n], p_3[X_n], \ldots]$$

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell)$$

$$p_r[X_n] = x_1^r + x_2^r + \dots + x_n^r$$

p_{λ}	X_n	$:=p_{\lambda_1} $	$[X_n]$	$ p_{\lambda_2}[$	$[X_n]$	$ \cdots p_{\lambda_\ell} $	$[X_n]$
---------------	-------	---------------------	---------	-------------------	---------	-----------------------------	---------

5	Symmetric Functions		
	5.1	The Ring of Symmetric Functions	96
	5.2	Other Bases for Homogeneous Symmetric Functions	98
	5.3	Specialization to m Variables	107
	5.4	Schur Functions and the Frobenius Character Formula	110
	5.5	Frobenius' Characteristic Function	117
	5.6	Branching Rules	119
	5.7	Littlewood–Richardson Coefficients	120
	5.8	The Hook-Length Formula	124
	5.9	The Involution $s_{\lambda} \mapsto s_{\lambda'}$	127
	5.10	The Jacobi-Trudi Identities	129
	5.11	The Recursive Murnaghan-Nakayama Formula	132
	5 12	Character Values of Alternating Groups	136

$$Sym := \mathbb{Q}[p_1[X_n], p_2[X_n], p_3[X_n], \ldots]$$

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell)$$

$$p_r[X_n] = x_1^r + x_2^r + \dots + x_n^r$$

$$p_{\lambda}[X_n] := p_{\lambda_1}[X_n]p_{\lambda_2}[X_n]\cdots p_{\lambda_{\ell}}[X_n]$$

$$h_r[X_n] = \sum_{1 < i_1 < i_2 < \dots < i_r < n} x_{i_1} x_{i_2} \cdots x_{i_r}$$

$h_{\lambda}[X_n]$	$:=h_{\lambda_1}$	$[X_n]h_{\lambda_2}$	$[X_n]$.	$\cdots h_{\lambda_{\ell}}[X_n]$
--------------------	-------------------	----------------------	-----------	----------------------------------

Symn	netric Functions	96
5.1	The Ring of Symmetric Functions	96
5.2	Other Bases for Homogeneous Symmetric Functions	98
5.3	Specialization to m Variables	107
5.4	Schur Functions and the Frobenius Character Formula	110
5.5	Frobenius' Characteristic Function	117
5.6	Branching Rules	119
5.7	Littlewood–Richardson Coefficients	120
5.8	The Hook-Length Formula	124
5.9	The Involution $s_{\lambda} \mapsto s_{\lambda'}$	127
5.10	The Jacobi-Trudi Identities	129
5.11	The Recursive Murnaghan-Nakayama Formula	132
5.12	Character Values of Alternating Groups	136

$$Sym := \mathbb{Q}[p_1[X_n], p_2[X_n], p_3[X_n], \ldots]$$

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell)$$

$$p_r[X_n] = x_1^r + x_2^r + \dots + x_n^r$$

$$p_{\lambda}[X_n] := p_{\lambda_1}[X_n]p_{\lambda_2}[X_n] \cdots p_{\lambda_{\ell}}[X_n]$$

$$h_r[X_n] = \sum_{1 \le i_1 \le i_2 \le \dots \le i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r}$$

$$h_{\lambda}[X_n] := h_{\lambda_1}[X_n]h_{\lambda_2}[X_n]\cdots h_{\lambda_{\ell}}[X_n]$$

$$e_r[X_n] = \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r}$$

$$e_{\lambda}[X_n] := e_{\lambda_1}[X_n]e_{\lambda_2}[X_n]\cdots e_{\lambda_{\ell}}[X_n]$$

Symn	netric Functions	96
5.1	The Ring of Symmetric Functions	96
5.2	Other Bases for Homogeneous Symmetric Functions	98
5.3	Specialization to m Variables	107
5.4	Schur Functions and the Frobenius Character Formula	110
5.5	Frobenius' Characteristic Function	117
5.6	Branching Rules	119
5.7	Littlewood–Richardson Coefficients	120
5.8	The Hook-Length Formula	124
5.9	The Involution $s_{\lambda} \mapsto s_{\lambda'}$	127
5.10	The Jacobi-Trudi Identities	129
5.11	The Recursive Murnaghan-Nakayama Formula	132
5.12	Character Values of Alternating Groups	136

$$Sym := \mathbb{Q}[p_1[X_n], p_2[X_n], p_3[X_n], \ldots]$$

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell)$$

$$p_r[X_n] = x_1^r + x_2^r + \dots + x_n^r$$

$$p_{\lambda}[X_n] := p_{\lambda_1}[X_n]p_{\lambda_2}[X_n] \cdots p_{\lambda_{\ell}}[X_n]$$

$$h_r[X_n] = \sum_{1 < i_1 < i_2 < \dots < i_r < n} x_{i_1} x_{i_2} \cdots x_{i_r}$$

$$h_{\lambda}[X_n] := h_{\lambda_1}[X_n]h_{\lambda_2}[X_n]\cdots h_{\lambda_{\ell}}[X_n]$$

$$e_r[X_n] = \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r}$$

$$e_{\lambda}[X_n] := e_{\lambda_1}[X_n]e_{\lambda_2}[X_n]\cdots e_{\lambda_{\ell}}[X_n]$$

$$s_{\lambda}[X_n] = \sum_{T} x_1^{m_1(T)} x_2^{m_2(T)} \cdots x_n^{m_n(T)}$$

5	Symmetric Functions		
	5.1	The Ring of Symmetric Functions	96
	5.2	Other Bases for Homogeneous Symmetric Functions	98
	5.3	Specialization to m Variables	107
	5.4	Schur Functions and the Frobenius Character Formula	110
	5.5	Frobenius' Characteristic Function	117
	5.6	Branching Rules	119
	5.7	Littlewood–Richardson Coefficients	120
	5.8	The Hook-Length Formula	124
	5.9	The Involution $s_{\lambda} \mapsto s_{\lambda'}$	127
	5.10	The Jacobi-Trudi Identities	129
	5.11	The Recursive Murnaghan-Nakayama Formula	132
	5 12	Character Values of Alternating Groups	126

$$Sym := \mathbb{Q}[p_1[X_n], p_2[X_n], p_3[X_n], \ldots]$$

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell)$$

$$p_r[X_n] = x_1^r + x_2^r + \dots + x_n^r$$

$$p_{\lambda}[X_n] := p_{\lambda_1}[X_n]p_{\lambda_2}[X_n] \cdots p_{\lambda_{\ell}}[X_n]$$

$$h_r[X_n] = \sum_{1 < i_1 < i_2 < \dots < i_r < n} x_{i_1} x_{i_2} \cdots x_{i_r}$$

$$h_{\lambda}[X_n] := h_{\lambda_1}[X_n]h_{\lambda_2}[X_n]\cdots h_{\lambda_{\ell}}[X_n]$$

$$e_r[X_n] = \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r}$$

$$e_{\lambda}[X_n] := e_{\lambda_1}[X_n]e_{\lambda_2}[X_n]\cdots e_{\lambda_{\ell}}[X_n]$$

$$s_{\lambda}[X_n] = \sum_{T} x_1^{m_1(T)} x_2^{m_2(T)} \cdots x_n^{m_n(T)}$$

5	Symmetric Functions		
	5.1	The Ring of Symmetric Functions	96
	5.2	Other Bases for Homogeneous Symmetric Functions	98
	5.3	Specialization to m Variables	107
	5.4	Schur Functions and the Frobenius Character Formula	110
	5.5	Frobenius' Characteristic Function	117
	5.6	Branching Rules	119
	5.7	Littlewood–Richardson Coefficients	120
	5.8	The Hook-Length Formula	124
	5.9	The Involution $s_{\lambda} \mapsto s_{\lambda'}$	127
	5.10	The Jacobi-Trudi Identities	129
	5.11	The Recursive Murnaghan-Nakayama Formula	132
	5.12	Character Values of Alternating Groups	136

 $\{p_{\lambda}[X_n]\}$ $\{h_{\lambda}[X_n]\}$ $\{e_{\lambda}[X_n]\}$ $\{s_{\lambda}[X_n]\}$ are all bases of the ring of symmetric functions

$$Sym := \mathbb{Q}[p_1[X_n], p_2[X_n], p_3[X_n], \ldots]$$

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell)$$

$$p_r[X_n] = x_1^r + x_2^r + \dots + x_n^r$$

$$p_{\lambda}[X_n] := p_{\lambda_1}[X_n]p_{\lambda_2}[X_n] \cdots p_{\lambda_{\ell}}[X_n]$$

$$h_r[X_n] = \sum_{1 \le i_1 \le i_2 \le \dots \le i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r}$$

$$h_{\lambda}[X_n] := h_{\lambda_1}[X_n]h_{\lambda_2}[X_n]\cdots h_{\lambda_{\ell}}[X_n]$$

$$e_r[X_n] = \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r}$$

$$e_{\lambda}[X_n] := e_{\lambda_1}[X_n]e_{\lambda_2}[X_n]\cdots e_{\lambda_{\ell}}[X_n]$$

$$s_{\lambda}[X_n] = \sum_{T} x_1^{m_1(T)} x_2^{m_2(T)} \cdots x_n^{m_n(T)}$$

3	Symmetric Functions		
	5.1	The Ring of Symmetric Functions	90
	5.2	Other Bases for Homogeneous Symmetric Functions	98
	5.3	Specialization to m Variables	10′
	5.4	Schur Functions and the Frobenius Character Formula	110
	5.5	Frobenius' Characteristic Function	11′
	5.6	Branching Rules	119
	5.7	Littlewood–Richardson Coefficients	120
	5.8	The Hook-Length Formula	124
	5.9	The Involution $s_{\lambda} \mapsto s_{\lambda'}$	12
	5.10	The Jacobi-Trudi Identities	129
	5.11	The Recursive Murnaghan-Nakayama Formula	132
	5.12	Character Values of Alternating Groups	136

 $\{p_{\lambda}[X_n]\}$ $\{h_{\lambda}[X_n]\}$ $\{e_{\lambda}[X_n]\}$ $\{s_{\lambda}[X_n]\}$ are all bases of the ring of symmetric functions

The Littlewood-Richardson rule

$$s_{\lambda}[X_n]s_{\mu}[X_n] = \sum_{\nu:|\nu|=|\lambda|+|\mu|} c_{\lambda\mu}^{\nu} s_{\nu}[X_n]$$

$$Sym := \mathbb{Q}[p_1[X_n], p_2[X_n], p_3[X_n], \ldots]$$

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell)$$

Symmetric Functions

Notes and references

The Littlewood-Richardson rule (9.2) was first stated, but not proved, in [L13] (p. 119). The proof subsequently published by Robinson [R5], and reproduced in Littlewood's book ([L9], pp. 94-6) is incomplete, and it is this proof that we have endeavoured to complete.

Complete proofs of the rule first appeared in the 1970s ([S7], [T4]).† Since then, many other formulations, proofs and generalizations have appeared, some of which are covered by the following references: Bergeron and Garsia [B4]; James [J7]; James and Peel [J10]; James and Kerber [J9]; Kerov [K8]; Littelmann [L7], [L8]; White [W3]; and Zelevinsky [Z2], [Z3].

†Gordon James [J8] reports that he was once told that 'the Littlewood-Richardson rule helped to get men on the moon, but it was not proved until after they had got there. The first part of this story might be an exaggeration.'

	90
tric Functions	96
nogeneous Symmetric Functions	98
Variables	107
the Frobenius Character Formula	110
eristic Function	117
	119
son Coefficients	120
⁷ ormula	124
$\rightarrow s_{\lambda'}$	127
lentities	129
naghan–Nakayama Formula	132
Alternating Groups	136

 $[X_n]$ $\{e_{\lambda}[X_n]\}$ $\{s_{\lambda}[X_n]\}$

bases of the ring of tric functions

Ine Littlewood-Richardson rule

$$s_{\lambda}[X_n]s_{\mu}[X_n] = \sum_{\nu:|\nu|=|\lambda|+|\mu|} c_{\lambda\mu}^{\nu} s_{\nu}[X_n]$$

$$s_{\lambda}[X_n] = \sum_{T} x_1^{m_1(T)} x_2^{m_2(T)} \cdots x_n^{m_n(T)}$$

6	Repr	141	
	6.1	Polynomial Representations	141
	6.2	Schur Algebras	142
	6.3	Schur Algebras and Symmetric Groups	148
	6.4	Modules of a Commutant	150
	6.5	Characters of the Simple Representations	153
	6.6	Polynomial Representations of the Torus	155
	6.7	Weight Space Decompositions	158

The dimension of an irreducible module indexed by a partition W^{λ} is the number of column strict tableaux of shape λ

5	Repr	esentations of General Linear Groups	141
	6.1	Polynomial Representations	141
	6.2	Schur Algebras	142
	6.3	Schur Algebras and Symmetric Groups	148
	6.4	Modules of a Commutant	150
	6.5	Characters of the Simple Representations	153
	6.6	Polynomial Representations of the Torus	155
	6.7	Weight Space Decompositions	158

$$V_n^{\otimes k} \simeq \bigoplus_{\lambda \vdash k} W^\lambda \otimes M^\lambda$$

The dimension of an irreducible module indexed by a partition W^{λ} is the number of column strict tableaux of shape λ

6	Repr	141	
	6.1	Polynomial Representations	141
	6.2	Schur Algebras	142
	6.3	Schur Algebras and Symmetric Groups	148
	6.4	Modules of a Commutant	150
	6.5	Characters of the Simple Representations	153
	6.6	Polynomial Representations of the Torus	155
	6.7	Weight Space Decompositions	158

$$V_n^{\otimes k} \simeq \bigoplus_{\lambda \vdash k} W^\lambda \otimes M^\lambda$$

The dimension of an irreducible module indexed by a partition W^{λ} is the number of column strict tableaux of shape λ

```
span\{v_{i_1} \otimes v_{i_2} \otimes \cdots \otimes v_{i_k} : 1 \leq i_1, i_2, \dots, i_k \leq n\} \simeq

span\{w_{T,S} : T \text{ column strict}, S \text{ standard}, sh(T) = sh(S) = \lambda\}
```

6	Repr	141	
	6.1	Polynomial Representations	141
	6.2	Schur Algebras	142
	6.3	Schur Algebras and Symmetric Groups	148
	6.4	Modules of a Commutant	150
	6.5	Characters of the Simple Representations	153
	6.6	Polynomial Representations of the Torus	155
	6.7	Weight Space Decompositions	158

$$V_n^{\otimes k} \simeq \bigoplus_{\lambda \vdash k} W^\lambda \otimes M^\lambda$$

The dimension of an irreducible module indexed by a partition W^{λ} is the number of column strict tableaux of shape λ

 $span\{v_{i_1} \otimes v_{i_2} \otimes \cdots \otimes v_{i_k} : 1 \leq i_1, i_2, \dots, i_k \leq n\} \simeq$ $span\{w_{T,S} : T \text{ column strict}, S \text{ standard}, sh(T) = sh(S) = \lambda\}$

character of irreducible representation

$$char_A W^{\lambda} = s_{\lambda}[X_n]$$

where x_1, x_2, \dots, x_n are the eigenvalues of the matrix A

Repr	141	
6.1	Polynomial Representations	141
6.2	Schur Algebras	142
6.3	Schur Algebras and Symmetric Groups	148
6.4	Modules of a Commutant	150
6.5	Characters of the Simple Representations	153
6.6	Polynomial Representations of the Torus	155
6.7	Weight Space Decompositions	158

$$V_n^{\otimes k} \simeq \bigoplus_{\lambda \vdash k} W^\lambda \otimes M^\lambda$$

$$p_{\mu}[X_n] = \sum_{\lambda \vdash k} \chi^{\lambda}(\mu) s_{\lambda}[X_n]$$

$$V_n^{\otimes k} \simeq \bigoplus_{\lambda \vdash k} W^{\lambda} \otimes M^{\lambda} \qquad p_{\mu}[X_n] = \sum_{\lambda \vdash k} \chi^{\lambda}(\mu) s_{\lambda}[X_n]$$

symmetric group characters are the change of basis coefficients power \rightarrow Schur

$$V_n^{\otimes k} \simeq \bigoplus_{\lambda \vdash k} W^\lambda \otimes M^\lambda$$

$$p_{\mu}[X_n] = \sum_{\lambda \vdash k} \chi^{\lambda}(\mu) s_{\lambda}[X_n]$$

symmetric group characters are the change of basis coefficients power \rightarrow Schur

(1)(2) (12)	(1)(2)(3) (12)(3) (123)	(1)(2)(3)(4) (12)(3)(4) (12)(34) (123)(4) (1234)
□ 1 -1	2 0 -1	3 1 -1 0 -1
	1 -1 1	<u> </u>
		3 -1 -1 0 1
		·

$$V_n^{\otimes k} \simeq \bigoplus_{\lambda \vdash k} W^\lambda \otimes M^\lambda$$

$$p_{\mu}[X_n] = \sum_{\lambda \vdash k} \chi^{\lambda}(\mu) s_{\lambda}[X_n]$$

symmetric group characters are the change of basis coefficients power \rightarrow Schur general linear group characters are the evaluations of Schur functions at eigenvalues of matrices

(1)(2) (12)	(1)(2)(3) (12)(3) (123)	(1)(2)(3)(4) (12)(3)(4) (12)(34) (123)(4) (1234)
□□ 1 1		
□ 1 -1	<u></u>	3 1 -1 0 -1
	1 -1 1	
		3 -1 -1 0 1

$$S_n \subseteq Gl_n$$

$$A_{(134)(25)} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

(1)(2)	(12)	(1)(2)(3)	(12)(3)	(123)	((1)(2)(3)(4)	(12)(3)(4)) (12)(34)	(123)(4)	(1234)	
□□ 1	1	1	1	1		1	1	1	1	1	
\Box 1	-1	2	0	-1		3	1	-1	0	-1	
		1	-1	1		2	0	2	-1	0	
					1	3	-1	-1	0	1	
						1	-1	1	1	-1	

ARE symmetric group characters are evaluations of some functions at eigenvalues of matrices?

$$\chi^{(n)}[X_n] = 1$$

$$\chi^{(n)}[X_n] = 1$$

$$\chi^{(n)}[X_n] = 1$$

$$\chi^{(n-1,1)}[X_n] = s_1[X_n] - 1$$

$$\chi^{(n)}[X_n] = 1$$

$$\chi^{(n-1,1)}[X_n] = s_1[X_n] - 1$$

$$\chi^{(n)}[X_n] = 1$$

$$\chi^{(n-1,1)}[X_n] = s_1[X_n] - 1$$

$$\chi^{(n-2,2)}[X_n] = s_2[X_n] - 2s_1[X_n]$$

$$\chi^{(n)}[X_n] = 1$$

$$\chi^{(n-1,1)}[X_n] = s_1[X_n] - 1$$

$$\chi^{(n-2,2)}[X_n] = s_2[X_n] - 2s_1[X_n]$$

$$\chi^{(n)}[X_n] = 1$$

$$\chi^{(n-1,1)}[X_n] = s_1[X_n] - 1$$

$$\chi^{(n-2,2)}[X_n] = s_2[X_n] - 2s_1[X_n]$$

$$\chi^{(n-2,1,1)}[X_n] = s_{1,1}[X_n] - s_1[X_n] + 1$$

$$\chi^{(n)}[X_n] = 1$$

$$\chi^{(n-1,1)}[X_n] = s_1[X_n] - 1$$

$$\chi^{(n-2,2)}[X_n] = s_2[X_n] - 2s_1[X_n]$$

$$\chi^{(n-2,1,1)}[X_n] = s_{1,1}[X_n] - s_1[X_n] + 1$$

$$\tilde{s}_{()}[X_n] = 1$$

$$\tilde{s}_1[X_n] = s_1[X_n] - 1$$

$$\tilde{s}_2[X_n] = s_2[X_n] - 2s_1[X_n]$$

$$\tilde{s}_{1,1}[X_n] = s_{1,1}[X_n] - s_1[X_n] + 1$$

(1)(2) (12)	(1)(2)(3) (12)(3) (123)	(1)(2)(3)(4	(12)(3)(4	1) (12)(34)	(123)(4)	(1234)	
		1	1	1	1	1	
□ 1 -1	2 0 -1	3	1	-1	0	-1	
	1 -1 1	2	0	2	-1	0	
		3	-1	-1	0	1	
		1	-1	1	1	-1	

$$\tilde{s}_{()}[X_n] = 1$$
 $s_{()}[X_n] = \tilde{s}_{()}[X_n]$ $\tilde{s}_{1}[X_n] = s_{1}[X_n] - 1$ $s_{1}[X_n] = \tilde{s}_{1}[X_n] + \tilde{s}_{()}[X_n]$ $\tilde{s}_{2}[X_n] = s_{2}[X_n] - 2s_{1}[X_n]$ $s_{2}[X_n] = \tilde{s}_{2}[X_n] + 2\tilde{s}_{1}[X_n] + \tilde{s}_{1}[X_n] + \tilde{s}_{1}[X_n] = \tilde{s}_{1,1}[X_n] - s_{1}[X_n] + \tilde{s}_{1}[X_n]$

$$s_{()}[X_n] = \tilde{s}_{()}[X_n]$$

$$s_1[X_n] = \tilde{s}_1[X_n] + \tilde{s}_{()}[X_n]$$

$$s_2[X_n] = \tilde{s}_2[X_n] + 2\tilde{s}_1[X_n] + 2\tilde{s}_{()}[X_n]$$

$$s_{()}[X_n] = \tilde{s}_{()}[X_n]$$

$$s_1[X_n] = \tilde{s}_1[X_n] + \tilde{s}_{()}[X_n]$$

$$s_2[X_n] = \tilde{s}_2[X_n] + 2\tilde{s}_1[X_n] + 2\tilde{s}_{()}[X_n]$$

$$s_{1,1}[X_n] = \tilde{s}_{1,1}[X_n] + \tilde{s}_1[X_n]$$

(1)(2) (12)	(1)(2)(3) (12)(3) (123)	(1)(2)(3)(4) (12)(3)(4	!) (12)(34)	(123)(4)	(1234)
		1	1	1	1	1
- 1 -1	□ 2 0 -1	3	1	-1	0	-1
	1 -1 1	2	0	2	-1	0
		3	-1	-1	0	1
		1	-1	1	1	-1

$$W^{\lambda}\downarrow_{S_n}^{Gl_n} \simeq \bigoplus_{\mu} (M^{(n-|\mu|,\mu)})^{\oplus r_{\lambda\mu}}$$

$$s_{()}[X_n] = \tilde{s}_{()}[X_n]$$

$$s_1[X_n] = \tilde{s}_1[X_n] + \tilde{s}_{()}[X_n]$$

$$s_2[X_n] = \tilde{s}_2[X_n] + 2\tilde{s}_1[X_n] + 2\tilde{s}_{()}[X_n]$$

$$s_{1,1}[X_n] = \tilde{s}_{1,1}[X_n] + \tilde{s}_1[X_n]$$

(1)(2) (12)	(1)(2)(3) (12)(3) (123)	(1)(2)(3)(4) (12)(3)(4	4) (12)(34)	(123)(4)) (1234)	
		\Box 1	1	1	1	1	
□ 1 -1	2 0 -1	3	1	-1	0	-1	
	1 -1 1	2	0	2	-1	0	
		3	-1	-1	0	1	
		1	-1	1	1	-1	

$$W^{\lambda} \downarrow_{S_n}^{Gl_n} \simeq \bigoplus_{\mu} (M^{(n-|\mu|,\mu)})^{\oplus r_{\lambda\mu}} \qquad s_{\lambda}[X_n] = \sum_{\mu} r_{\lambda\mu} \tilde{s}_{\mu}[X_n]$$

(1)(2) (12)	(1)(2)(3) (12)(3) (123)	(1)(2)(3)(4) (12)(3)(4) (12)(34) (123)(4) (1234)
□ 1 -1	□ 2 0 -1	3 1 -1 0 -1
	1 -1 1	□ 2 0 2 -1 0
		3 -1 -1 0 1

$$W^{\lambda} \downarrow_{S_n}^{Gl_n} \simeq \bigoplus_{\mu} (M^{(n-|\mu|,\mu)})^{\oplus r_{\lambda\mu}} \qquad s_{\lambda}[X_n] = \sum_{\mu} r_{\lambda\mu} \tilde{s}_{\mu}[X_n]$$

$$W^{\lambda} \downarrow_{S_n}^{Gl_n} \simeq \bigoplus_{\mu} (M^{(n-|\mu|,\mu)})^{\oplus r_{\lambda\mu}} \qquad s_{\lambda}[X_n] = \sum_{\mu} r_{\lambda\mu} \tilde{s}_{\mu}[X_n]$$

symmetric group characters are evaluations of some functions at eigenvalues of matrices.

Finding a "nice" combinatorial formula for the coefficients $r_{\lambda\mu}$ will take some development of the linear algebra and combinatorics of this basis. This is known as the "restriction problem." The answer is closely related to (inner and outer) plethysm.

$$p_{\mu}[X_n] = \sum_{\lambda \vdash k} \chi^{\lambda}(\mu) s_{\lambda}[X_n]$$

$$p_{\mu}[X_n] = \sum_{\substack{\lambda \vdash k \\ \lambda : |\lambda| \le k}} \chi^{\lambda}(\mu) s_{\lambda}[X_n]$$

$$= \sum_{\substack{\lambda : |\lambda| \le k}} \chi^{\lambda}_{P_k(n)}(\mu) \tilde{s}_{\lambda}[X_n]$$

 $P_k(n)$ partition algebra - Martin and Jones from 90's, Halverson, Ram, Benkart from 2000's

$$p_{\mu}[X_n] = \sum_{\lambda \vdash k} \chi^{\lambda}(\mu) s_{\lambda}[X_n]$$
$$= \sum_{\lambda : |\lambda| \le k} \chi^{\lambda}_{P_k(n)}(\mu) \tilde{s}_{\lambda}[X_n]$$

 $P_k(n)$ partition algebra - Martin and Jones from 90's, Halverson, Ram, Benkart from 2000's

	•							
•	1	1	2	2	5	3	2	
	0	1	3	1	10	4	1	
	0	0	1	1	6	2	0	
	0	0	1	-1	6	0	0	
	0	0	0	0	1	1	1	
	0	0	0	0	2	0	-1	
	0	0	0	0	1	-1	1	

$$p_{\mu}[X_n] = \sum_{\substack{\lambda \vdash k \\ \lambda : |\lambda| \le k}} \chi^{\lambda}(\mu) s_{\lambda}[X_n]$$

$$= \sum_{\substack{\lambda : |\lambda| \le k}} \chi^{\lambda}_{P_k(n)}(\mu) \tilde{s}_{\lambda}[X_n]$$

The dimension of an irreducible module indexed by a partition P^{λ} is the number of set valued tableaux of shape $(n - |\lambda|, \lambda)$

 $P_k(n)$ partition algebra - Martin and Jones from 90's,

Halverson, Ram, Benkart from 2000's

•						
1	1	2	2	5	3	2
0	1	3	1	10	4	1
0	0	1	1	6	2	0
0	0	1	-1	6	0	0
0	0	0	0	1	1	1
0	0	0	0	2	0	-1
0	0	0	0	1	-1	1

$$p_{\mu}[X_n] = \sum_{\substack{\lambda \vdash k \\ \lambda : |\lambda| \le k}} \chi^{\lambda}(\mu) s_{\lambda}[X_n]$$

$$= \sum_{\substack{\lambda : |\lambda| \le k}} \chi^{\lambda}_{P_k(n)}(\mu) \tilde{s}_{\lambda}[X_n]$$

The dimension of an irreducible module indexed by a partition P^{λ} is the number of set valued tableaux of shape $(n - |\lambda|, \lambda)$

 $P_k(n)$ partition algebra - Martin and Jones from 90's,

Halverson, Ram, Benkart from 2000's

	•						
•	1	1	2	2	5	3	2
	0	1	3	1	10	4	1
	0	0	1	1		2	0
	0	0	1	-1	6	0	0
	0	0	0	0	1	1	1
	0	0	0	0	2	0	-1
	0	0	0	0	1	-1	1

$$P_k(n) \simeq \bigoplus_{\lambda: |\lambda| \le k} P^{\lambda} \otimes P^{\lambda}$$

$$p_{\mu}[X_n] = \sum_{\substack{\lambda \vdash k \\ \lambda : |\lambda| \le k}} \chi^{\lambda}(\mu) s_{\lambda}[X_n]$$

$$= \sum_{\substack{\lambda : |\lambda| \le k}} \chi^{\lambda}_{P_k(n)}(\mu) \tilde{s}_{\lambda}[X_n]$$

The dimension of an irreducible module indexed by a partition P^{λ} is the number of set valued tableaux of shape $(n - |\lambda|, \lambda)$

 $P_k(n)$ partition algebra - Martin and Jones from 90's,

Halverson, Ram, Benkart from 2000's

	•							
•	1	1	2	2	5	3	2	
	0	1	3	1	10	4	1	
	0	0	1	1	6	2	0	
	0	0	1	-1	6	0	0	
	0	0	0	0	1	1	1	
	0	0	0	0	2	0	-1	
	0	0	0	0	1	-1	1	

$$P_k(n) \simeq \bigoplus_{\lambda: |\lambda| \le k} P^{\lambda} \otimes P^{\lambda}$$

The Littlewood-Richardson rule

$$s_{\lambda}[X_n]s_{\mu}[X_n] = \sum_{\nu:|\nu|=|\lambda|+|\mu|} c_{\lambda\mu}^{\nu} s_{\nu}[X_n]$$

$$W^{\lambda} \otimes W^{\mu} \simeq \bigoplus_{\gamma} (W^{\gamma})^{\oplus c_{\lambda\mu}^{\gamma}}$$

$\boxed{2}$	3				
$\overline{2}$	$\overline{2}$	1	2		
$\overline{1}$	1	1	1	1	1

The Littlewood-Richardson rule

$$s_{\lambda}[X_n]s_{\mu}[X_n] = \sum_{\nu:|\nu|=|\lambda|+|\mu|} c_{\lambda\mu}^{\nu} s_{\nu}[X_n]$$

Reduced Kronecker coefficients

$$\tilde{s}_{\lambda}[X_n]\tilde{s}_{\mu}[X_n] = \sum_{\gamma} \overline{g}_{\lambda\mu\gamma}\tilde{s}_{\gamma}[X_n]$$

$$W^{\lambda} \otimes W^{\mu} \simeq \bigoplus_{\gamma} (W^{\gamma})^{\oplus c_{\lambda\mu}^{\gamma}}$$

$$W^{\lambda} \otimes W^{\mu} \simeq \bigoplus_{\gamma} (W^{\gamma})^{\oplus c_{\lambda\mu}^{\gamma}} \qquad M^{(n-|\lambda|,\lambda)} \otimes M^{(n-|\mu|,\mu)} \simeq \bigoplus_{\gamma} (M^{(n-|\gamma|,\gamma)})^{\oplus \overline{g}_{\lambda\mu\gamma}}$$

Theorem - combinatorial interpretation

$$\tilde{s}_{\mu_1}[X_n]\tilde{s}_{\mu_2}[X_n]\cdots\tilde{s}_{\mu_\ell}[X_n]\tilde{s}_{\lambda}[X_n] \qquad \leq \qquad s_{\mu_1}[X_n]s_{\mu_2}[X_n]\cdots s_{\mu_\ell}[X_n]\tilde{s}_{\lambda}[X_n]$$

1	$\overline{1}$	$\overline{2}1$	$\overline{2}12$

<u>1</u>	<u>1</u>	$\overline{2}1$	$\overline{2}2$	
				1

$\overline{1}$	$\overline{1}$	$\overline{2}11$	$\overline{2}2$

- **♦**set entries
- column strict and satisfies a lattice condition
- have shape $(r, \gamma)/(\gamma_1)$
- ullet content λ in the barred entries
- ullet content μ in the unbarred entries
- at most one barred entry per cell
- first row cannot have only barred entries
- **♦** first row cannot have sets of size 1

$$\tilde{s}_{\mu_1}[X_n]\tilde{s}_{\mu_2}[X_n]\cdots\tilde{s}_{\mu_\ell}[X_n]\tilde{s}_{\lambda}[X_n] \leq s_{\mu_1}[X_n]s_{\mu_2}[X_n]\cdots s_{\mu_\ell}[X_n]\tilde{s}_{\lambda}[X_n]$$

$$\vee | \qquad \qquad \qquad \qquad \vee |$$

$$\tilde{s}_{\mu}[X_n]\tilde{s}_{\lambda}[X_n] \leq s_{\mu}[X_n]\tilde{s}_{\lambda}[X_n]$$

Reduced Kronecker coefficients and the "restriction problem" seem to be closely related. There should be a notion of 'lattice' on these families of tableaux which simultaneously solves both of these problems

Merci!

Mon cher LaCIM, c'est à ta ton tour de te laisser parler d'amour....

Bon 50ième anniversaire!