The multiset partition algebra
and Kronecker product

Mike Zabrocki (York Univeristy, Canada)
joint work with Rosa Orellana



Hints about what is coming:



Hints about what is coming:

There 1s an algebra of multiset partitions which 1s the centralizer algebra
of the symmetric group algebra when it acts on polynomials.



Hints about what is coming:

There 1s an algebra of multiset partitions which 1s the centralizer algebra
of the symmetric group algebra when it acts on polynomials.

Kronecker coefhicients are the multiplicities of irreducibles in the restriction
of irreducibles of the partition algebra and the multiset partition algebra.



Hints about what is coming:

There 1s an algebra of multiset partitions which 1s the centralizer algebra
of the symmetric group algebra when it acts on polynomials.

Kronecker coefhicients are the multiplicities of irreducibles in the restriction
of irreducibles of the partition algebra and the multiset partition algebra.

‘The combinatorics/dimensions of irreducible partition algebra modules are
governed by set valued tableaux. The combinatorics/dimensions of
irreducible multiset partition algebra modules are governed by multiset tableaux.



Hints about what is coming:

There 1s an algebra of multiset partitions which 1s the centralizer algebra
of the symmetric group algebra when it acts on polynomials.

Kronecker coefhicients are the multiplicities of irreducibles in the restriction
of irreducibles of the partition algebra and the multiset partition algebra.

‘The combinatorics/dimensions of irreducible partition algebra modules are
governed by set valued tableaux. The combinatorics/dimensions of
irreducible multiset partition algebra modules are governed by multiset tableaux.

There should be operations on set and multiset valued tableaux that model
representation theory operations of restriction, induction, commuting tensor factors, etc.



Hints about what is coming:

There 1s an algebra of multiset partitions which 1s the centralizer algebra
of the symmetric group algebra when it acts on polynomials.

Kronecker coefhicients are the multiplicities of irreducibles in the restriction
of irreducibles of the partition algebra and the multiset partition algebra.

‘The combinatorics/dimensions of irreducible partition algebra modules are
governed by set valued tableaux. The combinatorics/dimensions of
irreducible multiset partition algebra modules are governed by multiset tableaux.

There should be operations on set and multiset valued tableaux that model
representation theory operations of restriction, induction, commuting tensor factors, etc.

Goal: develop combinatorics of set valued and multiset valued tableaux
to understand the Kronecker and restriction/branching from Gin to Sn.



Part I - T'he multiset partition algebra
and 1ts irreducible representations
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Partition algebra multiset partition algebra
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dimension of ka(n) number of set valued tableaux of shape A entriesin 1,2, ..., k
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Partition algebra orbit basis

Theorem 4.14. Multiplication in Py(n) in terms of the orbit basis {xz } ncr1y,(n) is given by

Z(n — 1P 1) {752 Xp if T\ * T exactly matches in the middle,
xn'lxn'z — pP
0 otherwise,

where the sum is over all coarsenings p of T x Ty obtained by connecting blocks that lie entirely in
the top row of m to blocks that lie entirely in the bottom row of T,.

Benkart-Halverson 2017
Partition Algebras and the Invariant Theory of the Symmetric Group

Example 4.16. Here k =4, n > 5, and |7 * ] = 2 (two blocks are removed upon concatenation
of m; and m).
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Partition Algebra diagram basis

dn‘ — Z .xp dﬂ?ldﬂz — n[nl*ﬂb]dnl*ﬂz
n=p
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Multiset partition algebra orbit basis
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generating function for the dimensions of the algebra

generating function for the dimensions of the irreducibles




Kronecker coefficients are the multiplicities
of the irreducibles in a restriction
(for both partition and multiset partition algebra)

P (’I’L) A ~ 14 7%,
Resp (mmmymWeere () = D D WE, () @ WE, ()"

vEn yEn

“The partition algebra and the Kronecker coefficients”
Bowman, de Visscher, Orellana 2012

MPy k. 4¢(n) A ~ % Y L
ReSMPd,k(n)®Wr—d,e(n)WJ\4Pr,k(n) — 69 éa(WMPd,k(n) & WWr—d,e(n))gA
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Part 11 - How to get at the combinatorics
of (reduced) Kronecker



Characters of irreducible (+/,, modules are Schur functions.

S\ 561,562,263,... Ln
Littlewood-Richardson
S n g Gl“ reduced Kronecker

Characters of irreducible Sn modules are “irreducible character basis”

§)\(ZC1,ZU2,CU3, ne 733??,)

T big



Combinatorial interpretations of

SASai1Sas " " " Say

coefficients are g, (a;)(as)---(ar)

= number of multiset tableaux satisfying
 shape (n— |v|,v)

content \ barred (ai,as,...,a,) unbarred
lattice condition

no singletons first row

no repeated entries

see Rosa’s talk tomorrow

Example: 21122| |11 [21]2
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A= (2,2) a; = 2 ag =1

coefficient of 5, IN 54393251 =5



approach #1 - rectification (Littlewood-Richardson version)
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approach #1 - rectification (Littlewood-Richardson version)

Sy S181 81 = Z(dlm VV7 )SASH = Z Z (dim W{ ) Sy

. -/ =0 -
¢ times i YEEVEIA|HL
S\ S1851 851 = E E Sy
N—— ——
¢ times v+ T:sh(T)=v/A

# of skew standard tableaux shape v / A= Z(dim ng)CK'y
yH£

=(3,2,2) A=(2,1)
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approach #1 - rectification (Littlewood-Richardson version)

Z Z (dim Wg )eX., sv

S\ S1S81 81 =
N—— ——
¢ times

S) 818181 =
N—— ——
¢ times

# of skew standard tableaux shape v / A= Z(dim ng)CK'y

Z(dlm Wg, )sa8y =

Y2

2.2

vEAN+HE T :sh(T)=v /A
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yH£
=(3,2,2) A=(2,1)
1(3 114 2|3 3|4 2|4 114 3|4 2|4
(52151515151, $322) 2 2 1 1 1 3 2 3
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l l l v v v
v v 4 3 4
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C21,31 = C21,22 = C21,211 — =1

jeu de Taquin



approach #1 - rectification (Littlewood-Richardson version)

Sy S181 81 = Z(dlm VV7 )SASH = Z Z (dim W{ ) Sy

N’
. -/ =0 v
¢ times 7 TREVEAIEL
S\ S51S51°°°*S1 — E E Sy
N ——
¢ times v+ T:sh(T)=v/A

# of skew standard tableaux shape v / A= Z(dim ng)CK'y

yH£
=(3,2,2) A=(2,1)
113 114 213 3|4 2|4 114 3|4 2|4
(52151515151, 5322) 2 2 1 1 1 3 2 3
4 3 4 2 3 2 1 1
l l l v v v _ _
v v 4 3 4 jeu de Taquin
3 4 2 34 2|4 3 2 2
11241123 1|34 1]2 13 112 1]4 113
322 322 322

C21,31 = C21,22 = C21,211 — =1

v
C)\~ =# of skew standard tableaux of shape v / A which rectify to super standard shape 7Y



approach #1 - “rectification” (reduced Kronecker version)
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approach #1 - “rectification” (reduced Kronecker version)
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approach #1 - “rectification” (reduced Kronecker version)

iy = 30 (dim W (575, = 3 30 (dim W )™ a5
¢ times VIS¢ Y| <L ] <[]+ A

S\ 518181 = E Ssh(T)
T

¢ times
# of set valued tableaux of “inner shape” A = *(dim Wé P_(W') "Ng v
y L
and “outer” shape (n —|v|,v) <
+ other conditions
A= (2,1) v =(2,2,2)

314 (12|14 [13|4 2141 (23|14 114 3114 (2114 |3 124| 1124 2 (34| |1134] |3 |4 2141 11114 A — di
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approach #2 - crystal bases or lattice condition
(Littlewood-Richardson version)

SASu1Sus " Sy, = S\S, 1 other stuff

N

“lattice” not “lattice”
combinatorial interpretation of LHS = skew -
column strict tableaux of shape /A SASu = Z Ssh(T)
content U T
21313 2133
11212 11112
11171 11112
“lattice” not “lattice”

a column strict tableau is “lattice” if the last r letters of the reading word
contains at least as many i'sas i+1’s



The notion of “lattice” comes from the highest weights from a
crystal structure on column strict tableaux

- crystal operators

- jeu de Taquin

- reading word

- Bender-Knuth involution
- standardization

21313 5 5 5
11112 1]1]2 112 2
177 111 1[111]1 1[1[1]1]1
21313 5 5 5
11112 1[1]2 112 2
TT17 112 1[111]2 1[111]1]2




approach #2 - crystal bases or lattice condition
(reduced Kronecker version)

SASu1Sus " " Sy, = S)\S,,1 other stuff

combinatorial interpretation of LHS =
multiset tableaux of content \ in barred
entries and [l in unbarred entries
w/certain lattice conditions
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Motivation:

Pieri rules
S S remove a box
Gl,, — Gl,,_1 remove a row
Py(n) = Pr_1(n) remove a box add a box
?7°07°7 remove a some cells add some cells

RSK and symmetric functions

n® = #SemiStdTab, x StdTab® =  #S5tdTab* x SetTaby,
Ak AFn

k —1

(n T ) = g #SemiStdTab) x SemiStdTab; = E #StdTab x MultiSetTab)

/'a Y
A7 AFn



Combinatorial interpretations of

SASa1Sas """ Say

= number of multiset tableaux satisfying
 shape (n—|v|,v) ’

! see Rosa’s talk tomorrow
e content \ barred (ai,as,...,a,) unbarred

e |attice condition

Example: |71 (11(2122| |1|T [21]2 1/1(1]21 1(1]1[22
21 22 21
11212120 [7]7 [51]99 117 5121 111PR11/22
1 2
A= (2,2) a; = 2 ag =1

coefficient of 54 in 5(2,2)s251 =8



